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A B S T R A C T   

Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental 
step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to 
discriminate between responders and non-responders of a given treatment) when using clinical routine data such 
as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. 
However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. 
Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to 
identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging 
(rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide 
good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on 
exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and indepen-
dently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) 
and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and 
graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions 
of individual outcomes never significantly differed from chance level, even when conducting a range of 
exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the 
sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods 
to process resting state data for prediction input as well as in the used parameters of the machine learning 
pipelines, corroborating the external validity of the results. These similar findings in two independent studies, 
analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuro-
imaging data from small samples and emphasizes that some of the prediction accuracies from previous studies 
may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of 
resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in pa-
tients with anxiety disorders remains yet to be delivered.   

1. Introduction 

Precision medicine represents the idea of tailoring treatment to in-
dividual patient characteristics rather than offering a "one size fits all" 
solution (Ozomaro et al., 2013). It bears high potential for improving 
treatment outcomes for the cost-intensive group of patients with mental 
disorders not responding to first-line treatments such as cognitive 
behavioral therapy (CBT). Data-based predictions of individual treat-
ment outcomes are a fundamental step towards precision medicine, as 
these predictions are needed to select the most suitable treatment option 
(Lueken and Hahn, 2020). 

With machine learning, a set of tools is available that excels at 
detecting complex patterns and interactions in multiple predictor vari-
ables and translating them into one prediction for the individual patient 
(Bzdok et al., 2017; Janssen et al., 2018). These approaches compliment 
those using classical, univariate analyses that have already been able to 
detect a range of response predictors on a group-level. For example, 
(Pico-Perez et al., 2022) show that it is possible to associate therapy 
response using task-based function magnetic resonance imaging (fMRI) 
data; (Fullana et al., 2017) and (Cyr et al., 2021) found evidence that 
resting state (rs-)fMRI data can be used to associate response in therapy 
patients with obsessive-compulsive disorder. Consequently, a variety of 
studies in recent years has examined a plethora of different potential 
predictor variables from numerous data processing pipelines and ma-
chine learning algorithms in order to identify the most promising ap-
proaches, including clinical routine and neuroimaging data (Vieira 
et al., 2022). 

Recent efforts to associate individual-level CBT outcomes with clin-
ical routine data alone have only resulted in moderate prediction ac-
curacies (58− 69%) (Hilbert et al., 2021; Hilbert et al., 2020; Hornstein 
et al., 2021; Taubitz et al., 2022; Wallert et al., 2022; Leehr et al., 2021; 
Symons et al., 2019; Symons et al., 2020). On the contrary, task-based 
and resting state neuroimaging data was found informative for predic-
tive models in anxiety disorders with accuracies between 81− 92% and 
might provide incremental accuracy (Hahn et al., 2015; Månsson et al., 
2015; Frick et al., 2020; Whitfield-Gabrieli et al., 2016). However, the 
neuroimaging studies have largely been plagued by very limited sample 
sizes (Vieira et al., 2022), which are prone to overfitting and only allow 

for weaker cross-validation strategies with increased risk of biased and 
overestimated accuracy estimates (Varoquaux, 2018; Varoquaux et al., 
2017; Flint et al., 2021). In addition, past reviews emphasized that some 
clinical predictors could be replicated quite consistently, whereas 
fMRI-based predictors were reported rather in exploratory studies and 
replicability is not always given (Deckert and Angelika, 2019). It re-
mains unclear whether neuroimaging data really facilitate superior 
prediction accuracies compared to clinical routine data, and how much 
incremental accuracy neuroimaging data provides when both data mo-
dalities are included in a common prediction model. 

In this study, we established two independent teams that applied 
sophisticated machine learning analysis pipelines on separate resting 
state functional MRI data from two multicenter large-scale trials in 
anxiety disorders. Each team analyzed one dataset, but teams did not 
directly replicate each other. Our aim was to investigate individual CBT 
outcome prediction performances (e.g. reduction in relevant question-
naire scores) to examine whether the promise of neuroimaging data to 
provide good to very good prediction accuracy holds true in these large 
clinical samples, and to compare the relative contributions of neuro-
imaging and sociodemographic / clinical features to the final prediction 
performance. Our approach with two independent analysis teams 
allowed for separate choices regarding specific predictors (e.g., 
regarding data extraction, preprocessing, and feature reduction) and 
machine learning pipelines for both datasets. Hence, we applied distinct 
powerful methodological approaches mirroring the heterogeneity of 
analysis pipelines in real-world settings. We hypothesized i) outcome 
prediction accuracies both immediately after and six months after 
treatment based on both resting state as well as demographic and clin-
ical data significantly exceeding chance level in both datasets, ii) resting 
state data providing incremental predictive power beyond the socio-
demographic and clinical data alone. 

2. Methods 

2.1. Datasets 

We analyzed data from two German multicenter studies on exposure- 
based CBT for anxiety disorders, the Protect-AD (NIMH Protocol 
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Registration System 01EE1402A; ClinicalTrials.gov ID NCT02605668; 
German Register of Clinical Studies DRKS00008743) and SpiderVR 
(ClinicalTrials.gov ID NCT03208400) studies. Protect-AD was conduct-
ed in Berlin, Bochum, Cologne, Dresden, Greifswald, Marburg, Münster 
and Würzburg. Patients with a diagnosis of panic disorder, agoraphobia, 
social anxiety disorder, or multiple specific phobias received exposure- 
based CBT in vivo across twelve sessions (Heinig et al., 2017). This 
was a randomized controlled study with two arms, where patients 
received the exposure sessions in a temporally intensified fashion 
delivered within 2 weeks or a standard less intensive way delivered 
within 6 weeks. Overall, participants did improve clinically with large 
effect sizes (Pittig et al., 2021). As patients in both arms improved 
comparably in the primary outcome, we consequently did not differ-
entiate for treatment condition for the current outcome prediction 
analysis and used all patients together. SpiderVR was conducted in 
Münster and Würzburg. Patients with a diagnosis of spider phobia 
received exposure-based CBT in virtuo in a single-session (Schwarzmeier 
et al., 2020). This was a prospective longitudinal study with only one 
arm, where all patients received an exposure session with a maximum 
duration of 2.5 h. Overall, participants did improve clinically with large 
effect sizes (Leehr et al., 2021) that were in line with other studies 
investigating virtual reality exposure treatment (Opris et al., 2012; 
Powers and Emmelkamp, 2008). 

All participants provided written informed consent before study 
participation. 

Both studies were approved by local Ethics Committees and per-
formed according to the Declaration of Helsinki. Protect-AD: TUD-Ethics 
Review Committee (EK 234,062,014, 11/14/2014), SpiderVR: Ethics 
Committees of the Medical Faculties at Wuerzburg University (proposal 
number 330/15) and Muenster University (proposal number 216–212-b- 
S). 

2.2. Patients and outcomes 

Among all patients included in the Protect-AD trial, a subset of n =
309 patients completed the fMRI assessment at baseline and was thus 
available for the current analyses. Of these, we excluded n = 66 patients 
due to data loss and insufficient quality in the rs-fMRI data (Lang-
hammer et al.), and an additional n = 23 patients due to missing primary 
outcome data, which is needed for the predictions. This resulted in a 
final sample of n = 220 patients for Protect-AD. For SpiderVR, all n =
207 patients were assessed in the scanner. Due to loss and insufficient 
quality in the rs-fMRI data, we excluded 17 participants, resulting in a 
final sample of n = 190 patients for SpiderVR. Eleven patients did not 
take part in the 6-month follow up (FU) assessment and thus were not 
included in the prediction of FU outcomes, resulting in a sample of n =
179 patients for these sub-analyses. Note that this sample is largely the 
same sample used in (Leehr et al., 2021), but differs slightly: we included 
patients who were assessed after the analyses for the previous study 
were completed, but had to exclude patients with bad or missing rs-fMRI 
images that were included in the previous study. The data used in the 
analysis of this manuscript have previously been analyzed univariately 
elsewhere (Leehr et al., 2024). 

Treatment response for Protect-AD was defined as a reduction of at 
least 50% in the Hamilton Anxiety Rating Scale (HAMA-A; administered 
with the Structured Interview Guide for the Hamilton Anxiety Scale 
(Shear et al., 2001)) score between baseline and post-treatment assess-
ment. This results in patients having improved their severity by at least 
one category post-therapy compared to pre-therapy (according to the 
severity cut-offs of Matza et al., 2010). This response definition was also 
used as the primary outcome in the clinical trial (Pittig et al., 2021). For 
SpiderVR, a reduction of at least 30% in the spider phobia questionnaire 
(SPQ (Hamm, 2006)) score between baseline and post-treatment 
assessment and between baseline and FU-assessment (primary 
outcome) was seen as treatment response. We chose this cutoff criterion 
as such a reduction typically leads to a post- or FU-treatment SPQ score 

of <20, which is defined as the cutoff for clinically significant symptoms 
(Hamm, 2006). This is in accordance with all other analyses of the 
Spider-VR project (Schwarzmeier et al., 2020). As a secondary outcome, 
a reduction of at least 50% in approach distance in a Behavioral 
Avoidance Test with a living bird spider (BAT, see (Schwarzmeier et al., 
2020) for a thorough description) was seen as treatment response. Pa-
tients’ demographics and clinical characteristics split between re-
sponders and non-responders are presented in Table 1. 

2.3. Image acquisition and preprocessing 

Protect-AD. MRI scans were acquired on harmonized scanning se-
quences at seven sites with 3-Tesla MRI scanners (3x Siemens TrioTim, 
1x Siemens Verio, 1x Siemens Prisma, 1x Siemens Skyra, 1 x Philips 
Achieva). Rs- fMRI images were collected using a T2-weighted gradient- 
echo echoplanar imaging (EPI) sequence (31–33 axial slices of 3.8 mm 
thickness with 10% gap per volume, TR = 2000 ms, TE = 29–30 ms, flip 
angle = 90◦, resolution = 3.3 × 3.3 × 3.8 mm, matrix size = 64 × 64 
voxel, field of view = 210 mm). 237 vol scans were acquired in one run 
with a total length of approx. 8 min. Patients were instructed to remain 
still and to close their eyes. The screen was black and the lights inside the 
MRI scanning room were switched off. Additionally, a T1-weighted 
magnetization-prepared rapid gradient-echo (MPRAGE) sequence (176 
sagittal slices, 1 mm slice thickness, no gap, TR = 1900 ms, TE = 2.26 
ms, flip angle = 9◦, resolution = 1 × 1 × 1 mm, matrix size = 256 × 256, 
field of view = 256 mm3) was used to acquire a structural scan. To 
minimize carry-over effects, we conducted the RS fMRI paradigm before 
all other paradigms that were also part of our MRI sessions. Hence, there 
were only structural MRI/T1-weighted sequences before the RS fMRI. 

Rs-fMRI data were preprocessed using the CONN toolbox and the 
CONN default preprocessing pipeline (Whitfield-Gabrieli, 2012) imple-
mented in MATLAB (R2019b; The MathWorks Inc., MA, USA) and 
SPM12 (Penny et al., 2006). The pipeline included functional realign-
ment and unwarping, slice timing correction, structural segmentation 
and normalization, functional normalization, smoothing, outlier iden-
tification and denoising. This was done centrally in order to rule out 
methodological differences between sites. More information on the 
preprocessing can be found elsewhere (Langhammer et al.). We used a 
selection of bilateral regions of interest (ROIs) implicated in clinical 
anxiety in recent meta-analyses (Chavanne and Robinson, 2021; Santos 
et al., 2019; Lueken and Hahn, 2016): the dorsal, pregenual, and sub-
genual part of the anterior cingulate cortex (ACC), the dorsomedial 
prefrontal cortex (DMPFC), the ventromedial prefrontal cortex 
(VMPFC), the dorsolateral prefrontal cortex (DLPFC), the ventrolateral 
prefrontal cortex (VLPFC), the orbitofrontal prefrontal cortex (OFPFC), 
the amygdala, the anterior and posterior insula, the hippocampus, the 
thalamus, the periacqueductal gray (PAG), and the bed nucleus of the 
stria terminalis (BNST). ROI definitions were taken from the Brainne-
tome atlas (Fan et al., 2016) (all ROIs except PAG and BNST; PAG based 
on masks created by Keuken and colleagues (Keuken et al., 2017), BNST 
based on the atlas for the hypothalamic region from Neudorfer and 
colleagues (Neudorfer et al., 2020)). ROI-to-ROI connectivity was 
extracted as the Fisher’s-z transformed correlation between mean time 
series per ROI. 

Additionally, graph metrics were calculated as they can characterize 
the properties of large-scale brain networks and their parts, which may 
be more predictive than classical ROI-ROI connectivity. We used ROIs as 
nodes and z-correlations >0.3 as edges. Four graph metrics were 
calculated for each node (ROI) and for the whole graph by averaging the 
results of all nodes: cost, global efficiency, betweenness centrality, and 
clustering coefficient. An introduction to graph-theory including an 
explanation of these metrics can be found here (Bullmore and Sporns, 
2009). 

SpiderVR. Patients were examined in two different 3-Tesla scanners: 
A Siemens Prisma MRI in Münster and a Siemens Skyra in Würzburg. Rs- 
fMRI images were collected with the following parameters: 31 
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(Würzburg) and 33 (Münster) axial slices of 3.8 mm thickness with 10% 
gap per volume, TR = 2000 ms, TE = 29 (Münster) or 30 ms (Würzburg), 
flip angle = 90◦, resolution = 3.3 × 3.3 × 3.8 mm, matrix size = 64 × 64 
voxel, field of view = 210 mm). The slices were positioned transaxially 
parallel to the intercommissural (AC-PC) plane and tilted 20◦ to reduce 
magnetic susceptibility artifacts in prefrontal areas. The T1-weightes 
MPRAGE sequence had the following parameters: 176 sagittal slices, 1 
mm slice thickness, no gap, TR = 2130 ms, TE = 2.28 ms, flip angle = 8◦, 
resolution = 1 × 1 × 1 mm, matrix size = 256 × 256, field of view = 256 
mm3. Again, we conducted the RS fMRI paradigm before all other fMRI 
paradigms that were also part of our MRI sessions. 

Rs-fMRI data were again preprocessed with the CONN toolbox and 
the CONN default preprocessing pipeline (Whitfield-Gabrieli, 2012), 
implemented in MATLAB (R2020b) and SPM12 (Penny et al., 2006). The 
preprocessing pipeline was similar to the one described above. For the 
first (“static resting state”) and second analysis (“combined static resting 
state and clinical data”), we extracted the ROI-to-ROI connectivity as the 
Fisher’s-z transformed correlation between mean time series per ROI for 
all the n = 116 ROIs in the “automatic anatomic labeling” (AAL) atlas 
(Rolls et al., 2020) (http://www.gin.cnrs.fr/en/tools/aal/). This resul-
ted in a 116 × 116 matrix. To obtain the correlations between every 
ROI-ROI pair excluding duplicates and self-correlations, we extracted 
the upper triangular part (without the diagonal), resulting in 
116×115/2 = 6670 correlation values per participant. 

2.4. Clinical and demographic predictor variables 

Protect-AD. In addition to the neuroimaging data, we used a minimal 
sociodemographic and clinical data predictor set that included only age, 
sex, and baseline severity (HAM-A values). Particularly age and baseline 
severity have been consistently shown to yield predictive utility in prior 
CBT outcome prediction studies (Hilbert et al., 2021; Hilbert et al., 2020; 
Hornstein et al., 2021; Leehr et al., 2021). For a more profound analysis 
of the clinical data, a separate analysis using the full breadth of clinical 
data in the Protect-AD dataset is currently under preparation. 

Spider-VR. To test whether the combination of clinical and de-
mographic data with Rs-fMRI data would improve predictive accuracy, 
we repeated the data predictor set described and used in a previous 
study on SpiderVR data (Leehr et al., 2021), in which we could find a 
significant, but relatively small predictive value of the clinical and de-
mographic alone. 

2.5. Machine learning pipeline 

Since the two teams worked separate from each other, the pipelines 
differ from each other: 

Protect-AD. We employed a stacked ensemble learning approach, 
with three first-level learners providing separate predictions based on i) 
the clinical and demographic predictors, ii) the ROI-to-ROI resting state 

Table 1 
Core sociodemographic and clinical characteristics of Protect-AD and SpiderVR datasets at pre-treatment, for the final used samples of patients and for responders and 
non-responders separately. Means (SD), except where noted. The categorization as responders (vs. non-responders) is based on the primary outcome measure, i.e. 
HAMA-A reductions of 50% (Protect-AD) and SPQ reductions of 30% (SpiderVR) from pre- to post-treatment assessment.   

Protect-AD SpiderVR  

Responder 
(n = 108) 

Non-responder 
(n = 112) 

All 
(n = 220) 

Responder 
(n = 105) 

Non-responder (n = 85) All 
(n = 190) 

Sociodemographics  
Female [n (%)] 56 (51.90) 60 (53.60) 116 (52.70) 89 (84.80) 72 (85.90) 162 (85.30) 
Age (years) 30.77 (10.51) 30.81 (10.21) 30.79 (10.34) 26.77 (7.78) 29.52 (9.82) 28.00 (8.84) 
Years of Education1 12.02 (1.39) 11.76 (1.39) 11.89 (1.39) 14.57 (3.03) 14.69 (2.96) 14.63 (2.99) 
Site: Berlin [n (%)] 23 (21.3) 24 (21.4) 47 (21.4) –  –  –  
Site: Bochum [n (%)] 16 (14.8) 3 (2.7) 19 (8.6) –  –  –  
Site: Dresden [n (%)] 22 (20.4) 27 (24.1) 49 (22.3) –  –  –  
Site: Greifswald [n (%)] 11 (10.2) 10 (8.9) 21 (9.5) –  –  –  
Site: Marburg [n (%)] 20 (18.5) 25 (22.3) 45 (20.5) –  –  –  
Site: Münster [n (%)] 9 (8.3) 10 (8.9) 19 (8.6) 50 (47.6) 54 (63.5) 104 (54.7) 
Site: Würzburg [n (%)] 7 (6.5) 13 (11.6) 20 (9.1) 55 (52.4) 31 (36.5) 86 (45.3) 
Smoking [n (%)]1 34 (33.00) 22 (19.80) 56 (26.20) NA  NA  NA  

Clinical characteristics  
Diagnosis: PD + AG [n (%)] 68 (63.00) 72 (64.30) 140 (63.60)       
Diagnosis: PD [n (%)] 61 (56.50) 64 (57.10) 125 (56.80)       
Diagnosis: AG [n (%)] 54 (50.00) 56 (50.00) 110 (50.00)       
Diagnosis: SAD [n (%)] 44 (40.70) 57 (50.90) 101 (45.90)       
Diagnosis: SPH [n (%)] 32 (29.60) 23 (20.50) 55 (25.00) 105 (100.00) 85 (100.00) 190 (100.00) 
Diagnosis: Major Depression [n (%)] 29 (26.9) 51 (45.5) 80 (36.4) 2 (1.90) 3 (3.53) 5 (2.63) 

Symptom severity  
SIGH-A 24.44 (5.68) 24.61 (5.09) 24.53 (5.37) NA  NA  NA  
SPQ NA  NA  NA  23.37 (2.15) 22.11 (1.93) 22.8 (2.15) 
BAT final distance NA  NA  NA  175.89 (63.04) 157.84 (70.13) 167.81 (66.74) 
CGI 4.79 (0.70) 5.02 (0.67) 4.90 (0.69) 4.43 (0.71) 4.15 (0.81) 4.31 (0.76) 
BDI-II 14.81 (10.20) 18.69 (8.91) 16.79 (9.74) 3.25 (3.25) 3.39 (3.82) 3.31 (3.92) 
ASI 26.20 (11.29) 28.55 (10.18) 27.40 (10.78) 13.71 (8.91) 15.74 (10.24) 14.62 (9.56) 
PAS 17.45 (9.74) 19.58 (11.05) 18.53 (10.46) NA  NA  NA  
LSAS 42.20 (29.23) 56.77 (31.25) 49.62 (31.07) 22.91 (16.59) 26.03 (18.39) 24.31 (17.44) 
DSM-5 SP 12.93 (10.60) 13.91 (10.18) 13.43 (10.37) NA  NA  NA  
PROMIS-SPH NA  NA  NA  1.82 (2.69) 1.99 (2.88) 1.89 (2.77) 

Outcome  
SIGH-A posttreatment 6.67 (3.93) 19.21 (6.64) 13.05 (8.33) NA  NA  NA  
SPQ post NA  NA  NA  13.30 (2.33) 17.78 (2.02) 15.31 (3.13) 
BAT post final distance NA  NA  NA  70.00 (56.46) 93.35 (61.60) 80.45 (59.79) 

PD: panic disorder, AG: agoraphobia, SAD: social anxiety disorder, SPH: specific phobia, SIGH-A: Structured Interview Guide for the Hamilton Anxiety Rating Scale, 
SPQ: Spider Phobia Questionnaire, CGI: Clinical Global Impression scale, BAT: Behavioral Avoidance Test, BDI-II: Beck Depression Inventory-II, ASI: Anxiety 
Sensitivity Index, PAS: Panic and Agoraphobia Scale, LSAS: Liebowitz Social Anxiety Scale, DSM-5 SP: Dimensional Specific Phobia Scale for DSM-5, PROMIS-SPH: 
Patient-Reported Outcomes Measurement Information System. 

1 data from n = 5 responder and n = 1 non-responder missing in Protect-AD. 
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connectivity and iii) the graph-derived metrics. These three first-level 
learners initially used k = 3, k = 435, and k = 124 features as inputs. 
Then, these separate first-level predictions were in turn used as features 
for the second-level learner that produced the final predictions. The 
whole procedure was conducted over 100 iterations to get robust esti-
mates of the performance metrics independent from the current train- 
test split. 

The first-level learners employed a train-test split with 80% of the 
data going into the train and 20% of the data going into the test sets, i.e., 
serving as out-of-sample validation samples. Patients of the minority 
outcome label were oversampled for a balanced outcome frequency. 
Missing features were imputed with their mode, median and mean as 
appropriate and rescaled to z-scores. For feature selection, we used an 
elastic net-regularized logistic regression model with stochastic gradient 
descent learning; features were selected for the prediction if they had 
above-average absolute feature weights with the help of scikit-learn’s 
“feature_selection.SelectFromModel” function. For the prediction, we 
used a random forest (Breiman, 2001) with 1000 estimators and 
otherwise standard scikit-learn (Pedregosa et al., 2011) hyper-
parameters. Predictions by first-level learners in the train set were used 
as features to train the second-level learner and predictions by first-level 
learners in the test set were used as features for the prediction on the test 
set (see supplemental figure 1). The primary second-level learner was 
also a random forest with 1000 estimators and otherwise standard 
scikit-learn hyperparameters, while we also employed logistic regres-
sion, majority voting, softmax voting and weighted softmax voting as 
exploratory second-level learners (see supplemental methods for de-
tails). Significance of the predictive models was assessed by comparing 
the balanced accuracies of the classifier against a pseudo-classifier with 
0.5 balanced accuracy (derived from the balanced outcome frequencies 
after resampling) over 100 iterations with Nadeau & Bengio’s corrected 
resampled t-test (Nadeau and Bengio, 2003; Bouckaert and Frank, 
2004). Due to the oversampling procedure the samples for the train and 
test split varied somewhat across the iterations, for the corrected 
resampled t-test we used the mean sample sizes across all iterations. 
Given the lack of significant results for this main approach, we con-
ducted additional exploratory post-hoc analyses that varied specific 
aspects of the machine learning pipeline, particularly the feature se-
lection approach, the examined outcome and the second-level learner. 
This also included one approach using all available ROIs from the whole 
brain instead the preselected ROIs based on the previous literature. 
Additionally, we repeated the main approach with treatment response as 
a dimensional measurement (change of scores/distance from pre to post 
treatment in percent) in a regressional machine learning approach and 
conducted a sanity check with synthetic data. These approaches are 
described in the supplemental methods. 

SpiderVR. We first used only the clinical and demographic data as 
features, effectively replicating the analysis by Leehr et al. (Leehr et al., 
2021). We then used only “static resting state” data, followed by the 
combination of static resting state and clinical and demographic data. 
Given the lack of significant results for these main approaches, we 
repeated the first approach with treatment response this time as a 
dimensional measurement (change of scores/distance from pre to post 
treatment in percent) in a regressional machine learning approach. We 
then conducted additional exploratory post-hoc analyses that used 
time-dependent features: a “sliding window” and an edge-functional 
connectivity analysis. Additionally, we repeated the sanity check of 
the Protect-AD part with our methodology. These exploratory ap-
proaches are described in detail in the supplemental methods. 

All built pipelines mainly followed a shared identical structure. We 
used the PHOTONAI toolbox (see https://www.photon-ai.com (Leen-
ings et al., 2021)). Following guidelines by Poldrack and colleagues 
(Poldrack et al., 2020), we applied a nested cross-validation scheme in 
which 10 inner validation loops were used to optimize hyperparameters 
and 10 outer validation loops were used to estimate model performance 
(with 10% of the samples as test set in every step). Thus, ten percent of 

the sample were used as out-of-sample validation sample in every outer 
validation loop. Model performance was optimized for balanced accu-
racy. The pipeline consisted of an imbalanced data transformer to ach-
ieve balanced outcome frequency, a standard scaler to z-score the data 
and a principal component analysis (PCA) and/ or an F-test based uni-
variate feature selection implemented in PHOTONAI to reduce the 
dimensionality of the data. Hyperparameter optimization was per-
formed based on grid search and included a test-wise disabling of each 
pre-processing algorithm (Scaling, PCA, F-test based feature selection). 
Hence, the grid search for the inner cross-validation included a pipeline 
variant without the algorithm, or in other words: whether to use the 
respective algorithm at all was itself a hyperparameter. This approach 
resulted in different numbers of features available for the classification 
algorithm, depending on whether PCA or F-test based univariate feature 
selection was used (see supplemental methods for details). As classifier, 
we used either a support vector machine (with the parameter c as well as 
the choice of the kernel, either linear or radial basis function, as 
hyperparameters and all other parameters at their default value set by 
scikit learn) or a random forest classifier (with maximum depth of each 
tree as a hyperparameter and all other parameters again at their default 
value). To test for statistical significance of the models, we repeated the 
analyses 1000 times with permuted labels. 

There were only small deviations from this approach in the different 
pipelines. For detailed parameters and differences between the pipe-
lines, see supplemental methods. 

3. Results 

Predictions across both datasets performed never outperformed 
chance. 

Protect-AD. For Protect-AD, the full prediction approach resulted in a 
mean balanced accuracy of 0.51 on the second-level learner, with all 
separate first-level learners likewise performing on chance level only 
(table 2). Despite being on chance level on average, we found that the 
corresponding area-under-the-curve for classification varied consider-
ably across iterations. Calibration plots also indicated an inability of the 
second-level learner to classify responders and non-responders correctly 
(supplemental figure 2). Results for the exploratory analyses including 
hyperparameter optimization were similarly non-significant, except for 
the sanity check that reached a mean balanced accuracy of 99.9% 
(supplemental Table 1). Given that no learner performed significantly 
better than chance, we did not examine the importance of individual 
features for classification. 

SpiderVR. For the Spider-VR dataset we were able to replicate the 
findings of the previous manuscript (Leehr et al., 2021) when using only 
clinical and demographic data (balanced accuracy of 0.613; see sup-
plemental methods and table 3). However, using “static” resting state 
data, balanced accuracy never significantly differed from chance (be-
tween 0.498 and 0.546; see table 3), with only little difference between 
outer validation loops and the different approaches concerning pre- to 
post-treatment or pre-treatment to FU prediction, as well as predicting 
SPQ or BAT response. Additionally, combining the static resting state 
data and clinical and demographic data did not yield significant pre-
diction results either(between 0.479 and 0.571; see table 3).This did not 
change when using sliding-window data (between 0.488 and 0.534) or 
edge-functional connectivity data (between 0.454 and 0.553; see sup-
plemental table S3), or dimensional targets (R2 between − .098 and 
− .15; see supplemental table S5) as basis for the predictions. This lack of 
predictive accuracy is not due to the pipeline, as the pipelines with the 
synthetic data (sanity check) reached a balanced accuracy of 1. Sup-
plemental table S4 shows detailed results of all ten outer folds for all 
classification approaches. Supplemental table S6 shows this information 
for the dimensional approaches. Again, we did not examine the impor-
tance of individual features for classification given the lack of classifiers 
performing significantly better than chance. 
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4. Discussion 

In these independent studies, we applied sophisticated machine 
learning analysis pipelines on resting state data from two large-scale 
trials in anxiety disorders in order to investigate whether neuro-
imaging (resting state) data provide good to very good prediction ac-
curacies in large clinical samples, and to examine the incremental 
contribution of neuroimaging beyond clinical and demographic data to 
the final prediction performance. Contrary to our hypotheses, resting 
state data was not able to predict exposure-based CBT responses above 
chance level, and did not provide incremental predictive power beyond 
the sociodemographic and clinical data. This was true for both datasets, 
for the main analyses as well as for a substantial number of exploratory 
analyses conducted on these datasets. Of note, prediction accuracy was 
even reduced when adding RS data to the feature set of clinical and 

demographic data in the Spider-VR sample instead of improving, sug-
gesting that RS data introduced considerable noise in the feature set. 
Accounting for the considerable heterogeneity in methodological ap-
proaches in the field, we were able to show a robust null-result of pre-
dictive performance in two separate powerful analysis pipelines. 

Predicting with an accuracy higher than chance is a comparably easy 
target in machine learning and substantially below clinical utility, which 
most likely requires accuracies beyond mere statistical significance to 
inform clinical decisions. This is true particularly for datasets with 
relatively equal group sizes (responders and non-responders) such as 
these. It was surpassed by the vast majority of published prediction 
studies using clinical and sociodemographic data (Vieira et al., 2022; 
Hilbert et al., 2021; Hilbert et al., 2020; Hornstein et al., 2021; Taubitz 
et al., 2022; Wallert et al., 2022; Leehr et al., 2021; Symons et al., 2020) 
and outperformed by previously published studies using neuroimaging 
data (Hahn et al., 2015; Månsson et al., 2015; Frick et al., 2020). 
Considering this background literature, the inability of rs-fMRI data to 
surpass chance level for the prediction of CBT outcomes in two 
large-scale datasets was surprising. This is even more the case given the 
high plausibility of resting state data for constructing outcome predic-
tion models: examining resting state functional connectivity is a reliable 
approach to robust large-scale brain networks (Yang et al., 2020), 
several of which play major roles in psychopathology (Menon, 2011): 
For anxiety disorders, this traditionally includes the salience network, 
central executive network, default-mode network and ventral attention 
network (Sylvester et al., 2012), while alternative taxonomies add for 
example a negative affect network (Williams, 2016). The brain areas 
implicated in these networks are largely in agreement with results from 
recent and historical meta-analyses (Chavanne and Robinson, 2021; 
Etkin and Wager, 2007). On a conceptual level, network dysfunction has 
been related to functional changes in perception, cognition, emotion, 
and behavior (Sylvester et al., 2012; Williams, 2016). The high plausi-
bility of resting state connectivity data for predicting psychotherapy 
outcomes has been further underscored by several studies reporting high 
prediction accuracies ranging between 70–81% for social anxiety dis-
order, post-traumatic stress disorder and obsessive-compulsive disorder 
(Whitfield-Gabrieli et al., 2016; Reggente et al., 2018; Zhutovsky et al., 
2019; Zhutovsky et al., 2021). However, all of these studies used sam-
ples with n < 50. This severely limits the ability to adequately evaluate 
classifiers, as this process is particularly dependent on sufficiently large 
test sets (Flint et al., 2021) which cannot be provided by these sample 
sizes. On the contrary, both datasets used in this study are substantially 
larger and include neuroimaging data collected at more than one site, 
making the datasets overall more similar to real-world use-cases. The 
inability to predict outcomes in these datasets therefore calls for caution 
regarding the interpretation of promising results from small samples and 
regarding the potential of rs-fMRI for treatment outcome prediction. 
This result and interpretation are further in line with a recent study 
aiming to predict treatment response to escitalopram in a moderately 
sized multi-site sample: in this study, the prediction based on resting 
state connectivity from baseline alone also was not able to surpass 

Table 2 
Mean prediction measurements of first and second level learner across 100 iterations in the Protect-AD dataset.   

Classifier Accuracy (SD) Balanced Accuracy (SD) Sensitivity (SD) Specificity (SD) 

First level learners 
Demographics and Clinical data random forest 0.465 

(0.073) 
0.465 
(0.073) 

0.460 
(0.121) 

0.470 
(0.118) 

Connectivity random forest 0.504 
(0.073) 

0.504 
(0.073) 

0.535 
(0.118) 

0.473 
(0.120) 

Graph Metrics random forest 0.503 
(0.064) 

0.503 
(0.064) 

0.512 
(0.114) 

0.494 
(0.110) 

Second level learner 
Random Forest random forest 0.505 

(0.076) 
0.505 
(0.076) 

0.524 
(0.118) 

0.487 
(0.125) 

SD: standard deviation. 

Table 3 
Mean prediction measurements of the different pipelines based on clinical and 
demographic data, resting-state and combined resting-state and clinical data in 
the Spider-VR dataset. Classifier is the one chosen in the best performing outer 
fold.  

Label Classifier Accuracy 
(SD) 

Balanced 
Accuracy 
(SD) 

Sensitivity 
(SD) 

Specificity 
(SD) 

Clinical and demographic data 
SPQ 
pre 
post 

random 
forest 

0.6 (0.11) 0.613 
(0.097) 

0.687 
(0.159) 

0.539 
(0.162) 

Static RS 
SPQ 
pre 
post 

random 
forest 

0.547 
(0.12) 

0.546 
(0.12) 

0.571 
(0.12) 

0.521 
(0.21) 

SPQ 
pre 
FU 

SVC 0.536 
(0.11) 

0.498 
(0.12) 

0.566 
(0.12) 

0.43 
(0.20) 

BAT 
pre 
post 

SVC 0.511 
(0.08) 

0.509 
(0.08) 

0.512 
(0.13) 

0.506 
(0.18) 

BAT 
pre 
FU 

random 
forest 

0.514 
(0.06) 

0.512 
(0.08) 

0.491 
(0.17) 

0.534 
(0.24) 

Static RS combined with clinical and demographic data 
SPQ 
pre 
post 

SVC 0.563 
(0.08) 

0.571 
(0.08) 

0.617 
(0.17) 

0.526 
(0.13) 

SPQ 
pre 
FU 

random 
forest 

0.548 
(0.12) 

0.479 
(0.13) 

0.583 
(0.19) 

0.375 
(0.33) 

BAT 
pre 
post 

random 
forest 

0.5 
(0.11) 

0.499 
(0.10) 

0.501 
(0.15) 

0.497 
(0.19) 

BAT 
pre 
FU 

SVC 0.512 
(0.14) 

0.500 
(0.15) 

0.555 
(0.16) 

0.445 
(0.22) 

SPQ: Spider Phobia Questionnaire, FU: Follow up, BAT: Behavioral Avoidance 
Test, SVC: Support Vector Classifier, SD: standard deviation. 
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chance level, while changes in connectivity from baseline to week two 
achieved between 64.0–69.4% accuracy (Harris et al., 2022). The au-
thors related this finding to early change. Including information from 
the first few sessions of a treatment may be a promising avenue for 
further research on theranostic biomarkers. 

It is important to note that the null-findings in this study were ach-
ieved using a powerful methodological approach which mirrored the 
heterogeneity of analysis pipelines in real-world settings. Random for-
ests and Support Vector Classifiers are particularly well-suited for 
tabular data such as ours, with random forests even outperforming deep 
learning approaches under such settings (Grinsztajn et al.). Moreover, in 
both datasets, we combined different data modalities including fMRI, 
clinical, and demographic data, as it has been recommended in the 
literature (Chekroud et al., 2021). On the Protect-AD dataset, we even 
integrated first-level classifiers in an ensemble learning approach, which 
often outperforms individual classifiers (Polikar, 2006). The convincing 
results of the concluding sanity check analysis conducted for this dataset 
generated further trust in the overall performance of the analytic pipe-
line. Given the inability to predict CBT outcomes in our main approach, 
we conducted additional exploratory post-hoc analyses on the 
Protect-AD dataset. As prediction accuracies did not increase for the 
approach using ROIs from the whole-brain, we can reasonably conclude 
that the lack of meaningful prediction was not related to an inappro-
priate selection of ROIs. For Protect-AD, our selection of ROIs based on 
the literature (Chavanne and Robinson, 2021; Santos et al., 2019; 
Lueken and Hahn, 2016) constitutes feature selection by prior knowl-
edge, which has been demonstrated to outperform data-driven feature 
selection approaches in some cases in the neuroimaging literature (Chu 
et al., 2012). We initially combined this approach with data driven 
feature selection methods in the analysis pipeline. As feature weights 
and selected features showed substantial variability across iterations on 
the Protect-AD dataset, we employed further feature selection methods, 
including the extraction of particularly stable features (Nogueira et al., 
2018; Meinshausen and Bühlmann, 2010) and a complementary 
approach using all available ROIs from the whole brain in additional 
exploratory analyses. As predictive performances did not differ between 
both hypothesis-based and complementary data-driven feature selec-
tion, we concluded that the lack of satisfactory results from feature se-
lection was grounded in the lack of predictive information in the 
underlying resting state in both datasets. This argument is further 
corroborated by the lack of significant prediction when combining 
resting state and clinical and demographic data in the Spider-VR dataset: 
this can be interpreted as the resting state data decreasing the 
signal-to-noise ratio in the feature set, thus deteriorating the predictive 
value of the overall dataset. 

Across both datasets, we also implemented sophisticated methodol-
ogy on the feature level itself by using graph metrics (main analysis), 
dynamic resting state functional connectivity (sliding windows analysis; 
exploratory) and edge-centric functional connectivity (exploratory). 
Graph metrics have received increasing attention as they excel at 
describing overall characteristics and topology of the large scale net-
works in the brain (Farahani et al., 2019). Sliding window approaches 
try to address a commonly raised concern regarding resting state para-
digms, namely their lack of temporal resolution: two brain areas may be 
strongly correlated for part of the paradigm time, but not at all during 
the rest of the time, making the correlation non-significant for the entire 
paradigm. Separating different time periods from each other and esti-
mating correlations within these periods might thus show meaningful 
correlations otherwise overlooked (Yan et al., 2020; Allen et al., 2014). 
Going even one step further, avoiding temporal blurring altogether, 
edge-functional connectivity examines co-fluctuations, i.e. shared pat-
terns of activity from one MRI image to the next (Faskowitz et al., 2020; 
Esfahlani et al., 2020; Novelli and Razi, 2022). Thus, this approach 
should be even more successful in uncovering dynamic functional con-
nectivity. A growing body of literature corroborates the feasibility and 
relevance of this approach (Jo et al., 2021; Chumin et al., 2022). 

However, none of the approaches mentioned above resulted in a 
meaningful pattern for prediction. 

Despite this methodological rigor, the current investigation has some 
limitations. Although our sample-sizes considerably surpass those of 
previous studies, they are still inferior to comparable studies on socio-
demographic, clinical and routine data that used more than thousand 
(Hilbert et al., 2020; Hornstein et al., 2021; Symons et al., 2020) to tens 
of thousands (Wolff et al., 2020) of patients. As model training and 
evaluation are dependent on the train and test set sizes, larger samples 
allow for the construction of more robust models and a less biased 
assessment of model performance, especially when working with high 
numbers of potential features, as in the case of the sliding-window and 
edge-functional connectivity approaches. However, sample sizes such as 
ours may be suitable for an initial assessment of model performance and 
considerably exceed previous investigations. Furthermore, both 
included studies were conducted at different sites and MRI data was 
collected on different scanners, adding additional variance in our data 
set. One way to tackle this problem would have been to harmonize the 
data across the sites (Eshaghzadeh Torbati et al., 2021; Yamashita et al., 
2019; Yu et al., 2018). However, since harmonization are 
population-based, they bear the risk of data leakage, so that test set 
subject information is used during harmonization and thus during 
classifier training. Alternatively, harmonization could be included in the 
train-test-split, however this would lead to increased variability between 
splits. Additionally, in real-life scenarios, a prediction algorithm might 
be deployed to new sites not included in the training procedure, thus a 
successful prediction algorithm should not be dependent on the data 
collection location or hardware. We therefore argue that the heteroge-
neity adds to our external validity, preventing overfitting. Second, by 
employing analytic teams that applied different powerful machine 
learning pipelines on the data, we mirrored the heterogeneity of analysis 
pipelines in real-world settings. Here, each team analyzed its own 
dataset, but teams did not directly replicate each other’s analysis. Pre-
vious research has shown that the specific analysis strategy can have a 
large impact on the analysis outcome for MRI data (Botvinik-Nezer et al., 
2020). But the fact that we found very similar results for different 
analysis conducted by different teams in different samples, indicates an 
overall lack of meaningful information for CBT outcome prediction 
within the broad feature set of resting state functional connectivity data 
of both datasets. Therefore, an exact replication of analytic strategies 
across teams and datasets would have made sense only if we had found a 
significant predictive model in the first place, to ensure the robustness of 
this analysis. Third, there are several other ways of analyzing resting 
state activity in addition to the ones applied in our approaches (e.g. 
decomposition into brain networks using ICA). As the possible combi-
nations between resting-state and machine learning analysis is endless, 
we cannot definitively rule out that another way of analyzing resting 
state would have yielded feature sets that would have led to more ac-
curate prediction. But given the amount of applied state-of-the-art ap-
proaches and the similarity in results across two independent teams and 
datasets suggests that the data does not exhibit an apparent predictive 
signal. 

In conclusion, we were not able to predict individual CBT outcomes 
based on resting state functional connectivity data from two large 
clinical trials in anxiety disorders. Across a variety of approaches, pre-
diction accuracies were much lower than in comparable yet smaller 
previous studies. This finding urges caution regarding the interpretation 
of promising results from small samples and re-iterates that some of the 
prediction accuracies from these studies may result from overestimation 
due to homogeneous data and weak cross-validation schemes (Varo-
quaux, 2018; Varoquaux et al., 2017; Flint et al., 2021). While neuro-
imaging may still set out to prove its added value for the prediction of 
treatment outcomes and in precision psychotherapy, adequately pow-
ered samples are a necessary prerequisite for an initial evaluation of 
predictive performance and for a subsequently identification of the most 
promising candidates. 
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We used resting-state fMRI data from two large clinical trials to 
predict individual CBT outcomes. Contrary to previous results, resting- 
state data never provided incremental predictive power beyond socio-
demographic and clinical data. These findings urge caution regarding 
the interpretation of promising prediction results based on neuro-
imaging data from small samples. 
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Conceptualization. Andreas Ströhle: Resources, Project administration, 
Funding acquisition, Conceptualization. Hans-Ulrich Wittchen: Fund-
ing acquisition, Conceptualization. Adrian Wroblewski: Supervision, 
Project administration, Investigation. Yunbo Yang: Writing – review & 
editing, Software, Methodology, Formal analysis, Data curation. Kati 
Roesmann: Writing – review & editing, Supervision, Project adminis-
tration, Investigation, Data curation. Elisabeth J. Leehr: Writing – re-
view & editing, Supervision, Project administration, Methodology, 
Investigation, Data curation. Udo Dannlowski: Writing – review & 
editing, Supervision, Resources, Project administration, Funding 
acquisition, Conceptualization. Ulrike Lueken: Writing – review & 
editing, Supervision, Resources, Project administration, Funding 
acquisition, Conceptualization. 

Declaration of competing interest 

The authors declare there is no conflict of interests. 

Data availability 

Data will be made available on request. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.neuroimage.2024.120639. 

References 

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014. 
Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24 
(3), 663–676. 

Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., Dreber, A., Huber, J., 
Johannesson, M., et al., 2020. Variability in the analysis of a single neuroimaging 
dataset by many teams. Nature 582, 84–88. 

Bouckaert, R.R., Frank, E., 2004. Evaluating the replicability of significance tests for 
comparing learning algorithms. In: Dai, H, Srikant, R, Zhang, C (Eds.), Advances in 
Knowledge Discovery and Data Mining. PAKDD 2004, Lecture Notes in Computer 
Science, Vol 3056. Springer, Heidelberg.  

K. Hilbert et al.                                                                                                                                                                                                                                  

https://github.com/wwu-trap/RS_Prediction_in_two_samples_paper
http://www.fzpe.de
https://doi.org/10.1016/j.neuroimage.2024.120639
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0001
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0001
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0001
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0002
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0002
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0002
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0003
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0003
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0003
http://refhub.elsevier.com/S1053-8119(24)00134-4/sbref0003


NeuroImage 295 (2024) 120639

9

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 
Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of 

structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186–198. 
Bzdok, D., Krzywinski, M., Altman, N., 2017. Points of significance: machine learning: a 

primer. Nat. Methods 14 (12), 1119–1120. 
Chavanne, A.V., Robinson, O.J., 2021. The overlapping neurobiology of induced and 

pathological anxiety: a meta-analysis of functional neural activation. Am. J. 
Psychiatry 178 (2), 156–164. 

Chekroud, A.M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., et al., 
2021. The promise of machine learning in predicting treatment outcomes in 
psychiatry. World Psychiatry 20, 154–170. 

Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C.P., Neuroimaging AsD, 2012. Does 
feature selection improve classification accuracy? Impact of sample size and feature 
selection on classification using anatomical magnetic resonance images. Neuroimage 
60 (1), 59–70. 

Chumin, E.J., Faskowitz, J., Esfahlani, F.Z., Jo, Y., Merritt, H., Tanner, J., et al., 2022. 
Cortico-subcortical interactions in overlapping communities of edge functional 
connectivity. Neuroimage 250, 118971. 

Cyr, M., Pagliaccio, D., Yanes-Lukin, P., Goldberg, P., Fontaine, M., Rynn, M.A., et al., 
2021. Altered fronto-amygdalar functional connectivity predicts response to 
cognitive behavioral therapy in pediatric obsessive-compulsive disorder. Depress. 
Anxiety 38 (8), 836–845. 

Deckert, J., Angelika, E, 2019. Predicting treatment outcome for anxiety disorders with 
or without comorbid depression using clinical, imaging and (epi)genetic data. Curr. 
Opin. Psychiatry 32 (1), 1–6. 

Esfahlani, F.Z., Jo, Y., Faskowitz, J., Byrge, L., Kennedy, D.P., Sporns, O., et al., 2020. 
High-amplitude cofluctuations in cortical activity drive functional connectivity. 
Proc. Natl. Acad. Sci. USA 117 (45), 28393–28401. 

Eshaghzadeh Torbati, M., Minhas, D.S., Ahmad, G., O’Connor, E.E., Muschelli, J., 
Laymon, C.M., Yang, Z., Cohen, A.D., Aizenstein, H.J., Klunk, W.E., Christian, B.T., 
Hwang, S.J., Crainiceanu, C.M., Tudorascu, D.L., 2021. A multi-scanner 
neuroimaging data harmonization using RAVEL and ComBat. Neuroimage 245, 
118703. 

Etkin, A., Wager, T.D., 2007. Functional neuroimaging of anxiety: a meta-analysis of 
emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. 
Psychiat. 164 (10), 1476–1488. 

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., et al., 2016. The human 
Brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. 
Cortex 26 (8), 3508–3526. 

Farahani, F.V., Karwowski, W., Lighthall, N.R., 2019. Application of graph theory for 
identifying connectivity patterns in human brain networks: a systematic review. 
Front. Neurosci. 13, 585. 

Faskowitz, J., Esfahlani, F.Z., Jo, Y., Sporns, O., Betzel, R.F., 2020. Edge-centric 
functional network representations of human cerebral cortex reveal overlapping 
system-level architecture. Nat. Neurosci. 23 (12), 1644–1654. 

Flint, C., Cearns, M., Opel, N., Redlich, R., Mehler, D.M.A., Emden, D., et al., 2021. 
Systematic misestimation of machine learning performance in neuroimaging studies 
of depression. Neuropsychopharmacology 46 (8), 1510–1517. 

Frick, A., Engman, J., Alaie, I., Bjorkstrand, J., Gingnell, M., Larsson, E.M., et al., 2020. 
Neuroimaging, genetic, clinical, and demographic predictors of treatment response 
in patients with social anxiety disorder. J. Affect. Disord. 261, 230–237. 

Fullana, M.A., Zhu, X., Alonso, P., Cardoner, N., Real, E., Lopez-Sola, C., et al., 2017. 
Basolateral amygdala-ventromedial prefrontal cortex connectivity predicts cognitive 
behavioural therapy outcome in adults with obsessive-compulsive disorder. 
J. Psychiatry Neurosci. 42 (6), 378–385. 

Grinsztajn L., Oyallon E., Varoquaux G. Why do tree-based models still outperform deep 
learning on tabular data? arXiv preprint: 2207.08815. 

Hahn, T., Kircher, T., Straube, B., Wittchen, H.U., Konrad, C., Strohle, A., et al., 2015. 
Predicting treatment response to cognitive behavioral therapy in panic disorder with 
agoraphobia by integrating local neural information. JAMA Psychiat. 72 (1), 68–74. 

Hamm, A, 2006. Spezifische Phobien. Hogrefe, Göttingen.  
Harris, J.K., Hassel, S., Davis, A.D., Zamyadi, M., Arnott, S.R., Milev, R., et al., 2022. 

Predicting escitalopram treatment response from pre-treatment and early response 
resting state fMRI in a multi-site sample: a CAN-BIND-1 report. Neuroimage Clin. 35, 
103120. 

Heinig, I., Pittig, A., Richter, J., Hummel, K., Alt, I., Dickhover, K., et al., 2017. 
Optimizing exposure-based CBT for anxiety disorders via enhanced extinction: 
design and methods of a multicentre randomized clinical trial. Int. J. Methods 
Psychiatr. Res. 26 (2). 

Hilbert, K., Jacobi, T., Kunas, S.L., Elsner, B., Reuter, B., Lueken, U., et al., 2021. 
Identifying CBT non-response among OCD outpatients: a machine-learning 
approach. Psychother.. Res. 31 (1), 52–62. 

Hilbert, K., Kunas, S.L., Lueken, U., Kathmann, N., Fydrich, T., Fehm, L., 2020. Predicting 
cognitive behavioral therapy outcome in the outpatient sector based on clinical 
routine data: a machine learning approach. Behav. Res. Ther. 124, 103530. 

Hornstein, S., Forman-Hoffman, V., Nazander, A., Ranta, K., Hilbert, K., 2021. Predicting 
therapy outcome in a digital mental health intervention for depression and anxiety: a 
machine learning approach. Dig. Health 7, 20552076211060659. 

Janssen, R.J., Mourão-Miranda, J., Schnack, H.G., 2018. Making individual prognoses in 
psychiatry using neuroimaging and machine learning. Biol. Psychiatry 3 (9), 
798–808. 

Jo, Y., Esfahlani, F.Z., Faskowitz, J., Chumin, E.J., Sporns, O., Betzel, R.F., 2021. The 
diversity and multiplexity of edge communities within and between brain systems. 
Cell Rep. 37 (7), 110032. 

Keuken, M.C., Bazin, P.L., Backhouse, K., Beekhuizen, S., Himmer, L., Kandola, A., et al., 
2017. Effects of aging on T(1), T(2)*, and QSM MRI values in the subcortex. Brain 
Struct. Funct. 222 (6), 2487–2505. 

Langhammer T., Hilbert K., Wroblewski A., Ridderbusch I.C., Yang Y., Richter J. et al. 
Resting-state functional connectivity in anxiety disorders: a multicenter fMRI study. 
in preparation. 

Leehr, E.J., Roesmann, K., Bohnlein, J., Dannlowski, U., Gathmann, B., Herrmann, M.J., 
et al., 2021. Clinical predictors of treatment response towards exposure therapy in 
virtuo in spider phobia: a machine learning and external cross-validation approach. 
J. Anxiety. Disord. 83, 102448. 
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