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A B S T R A C T   

Predicting treatment outcome in internalizing mental disorders prior to treatment initiation is pivotal for pre-
cision mental healthcare. In this regard, resting-state functional connectivity (rs-FC) and machine learning have 
often shown promising prediction accuracies. This systematic review and meta-analysis evaluates these studies, 
considering their risk of bias through the Prediction Model Study Risk of Bias Assessment Tool (PROBAST). We 
examined the predictive performance of features derived from rs-FC, identified features with the highest pre-
dictive value, and assessed the employed machine learning pipelines. We searched the electronic databases 
Scopus, PubMed and PsycINFO on the 12th of December 2022, which resulted in 13 included studies. The mean 
balanced accuracy for predicting treatment outcome was 77% (95% CI: [72%- 83%]). rs-FC of the dorsolateral 
prefrontal cortex had high predictive value in most studies. However, a high risk of bias was identified in all 
studies, compromising interpretability. Methodological recommendations are provided based on a comprehen-
sive exploration of the studies’ machine learning pipelines, and potential fruitful developments are discussed.   

1. Introduction 

Internalizing mental disorders including depressive disorders, anxi-
ety disorders, obsessive compulsive disorders, and post-traumatic stress 
disorder are highly debilitating, ranking among the top ten causes for 
global years lived with disability (GBD, 2019 Mental Disorders Collab-
orators, 2022), and are associated with a substantial reduction of quality 
of life (Mack et al., 2015). These disorders are often grouped together (e. 
g., Hettema et al., 2006; Wergeland et al., 2021) because their symptoms 
have shown to load on a shared latent factor, commonly referred to as 
the internalizing factor (e.g., Andrews, 2018; Kotov et al., 2017). This 
factor is mainly characterized by distress and fear and also underlies 
their high comorbidity (Kessler et al., 2011). 

Last decades of research have yielded effective treatments for these 
disorders, including psychotherapy, pharmacotherapy, electroconvul-
sive treatment (ECT), and repetitive transcranial magnetic stimulation 

(rTMS; e.g., see meta-analyses of Carpenter et al., 2018; Cuijpers et al., 
2013; Dalhuisen et al., 2022; Mutz et al., 2019). However, each of these 
treatments comes with a high proportion of patients whose condition 
does not improve after treatment (non-responders, e.g., see reviews of 
Fitzgerald, 2020; Fonseka et al., 2018; Loerinc et al., 2015; Papakostas 
and Fava, 2009). These high rates of non-responders across treatments 
may indicate that there is no one-size fits all treatment and suitability 
varies among individuals or subgroups of patients. Following the 
concept of precision mental healthcare (DeRubeis, 2019), allocating 
patients a priori to the treatment most promising for them could reduce 
non-response rates. A necessary condition for such a treatment alloca-
tion is a sufficiently accurate prediction of treatment outcome on a 
single-subject level. 

From a methodological standpoint, machine learning approaches are 
particularly well-suited for this endeavor. In contrast to conventional 
statistical modeling, which predominantly aims at explaining existing 
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data, the core objective of machine learning is the accurate prediction of 
new data (Sidey-Gibbons and Sidey-Gibbons, 2019; Yarkoni and West-
fall, 2017). This shift in focus gives rise to two central distinctions be-
tween statistical modeling and machine learning: the assessment of the 
model’s performance and the models or algorithms employed. First, 
both approaches substantially diverge in their criteria and their pro-
cedure for determining a well-performing model. In statistical modeling, 
a well-performing model is one that effectively explains the data (e.g., a 
logistic regression model with a high R-squared indicating 
goodness-of-fit). On the other hand, in machine learning, a 
well-performing model is one that discriminates effectively between two 
or more classes in new data (e.g., achieving high predictive accuracy). 
Hence, instead of evaluating a modeĺs performance in the data set on 
which it has been trained, machine learning approaches apply the fitted 
model to ideally new data and assess its performance there. Since 
entirely new data are often unavailable, cross-validation techniques 
have been developed, iteratively dividing the dataset into a training set 
for model fitting and a test set for model evaluation. Several metrics to 
evaluate a modeĺs classification performance on the test set(s) exist, 
combining mainly the number of correctly and falsely predicted cases. 
One of the most general and most frequently used metrics is accuracy, 
summarizing the proportion of correctly classified (positive and nega-
tive) cases in relation to the total number of cases. However, its inter-
pretability diminishes when being based on imbalanced classes (e.g. 
60% nonresponders, 40% responders), a factor overlooked in several 
studies. In such cases, other metrics are recommended, including the 
Area Under the Curve (AUC) of the Receiver Operating Characteristic 
(ROC) and the balanced accuracy (see Thölke et al., 2023 for a more 
detailed discussion). 

The second central distinction between machine learning and sta-
tistical modelling are the models or algorithms employed. Seeking to 
explain the observed data in a clear manner, statistical models often 
determine possible relationships between variables and employ a small 
number of dependent variables. For instance, logistic and linear 
regression assume a linear relationship between independent and 
dependent variables, with interaction effects only considered when 
explicitly added to the model. In contrast, machine learning approaches 
include a diverse array of algorithms capable of effectively handling 
numerous variables and capturing nonlinear relationships. Some of the 
most common algorithms are support vector machines (SVM), random 
forests and neural networks. To conclude, machine learning approaches 
are particularly well-suited for testing the possibility of pre-treatment 
prediction of treatment outcomes, given their inherent design for this 
application, validating models by their performance on unseen data, and 
employing versatile algorithms (see Sidey-Gibbons and Sidey-Gibbons, 
2019 for a more in-depth introduction to machine learning). 

A large number of studies has employed machine learning ap-
proaches to predict treatment outcome in internalizing mental disor-
ders, using a wide range of modalities including demographic, clinical, 
EEG, and (f)MRI data (e.g., see reviews of Cohen et al., 2021; Karvelis 
et al., 2022; Vieira et al., 2022). One promising subtype of fMRI data is 
resting-state functional connectivity, relying on BOLD (blood--
oxygenation level dependent) contrast imaging to measure the local 
blood supply in the brain as a proxy of neural activity. The basis for 
calculating resting-state functional connectivity is a resting-state scan, in 
which participants are directed to remain motionless for approximately 
8–10 minutes without engaging in any specific task or receiving visual 
stimuli. Based on these data, functional connectivity between grey 
matter brain regions is calculated as their statistical correlation of BOLD 
signals over time (for an easy introduction into resting-state functional 
connectivity, see Lv et al., 2018). Neuroimaging data and more specif-
ically resting-state functional connectivity appeared to be particularly 
valuable in previous reviews and meta-analyses comparing prediction 
performances across different modalities (Del Fabro et al., 2023; Vieira 
et al., 2022). Moreover, resting-state functional connectivity seems 
promising due to its shared alterations across internalizing disorders, 

including disorder-specific variations (e.g., Williams, 2017). The size 
and type of these alterations may impact treatment response likelihood, 
independent of the type of treatment. Additionally, compared to other 
neuroimaging modalities, resting-state data can be assessed relatively 
consistently across sites and with a low burden on patients, facilitating 
the generation of larger samples, as required for machine learning. 

However, the combination of resting-state functional connectivity 
and machine learning goes along with several methodological chal-
lenges. One of the biggest challenges is the high dimensionality of 
resting-state functional connectivity data (Khosla et al., 2019). In the-
ory, an extensive number of functional connectivities can be computed 
from a resting-state scan in typical resolution. A normalized brain scan 
with an isotropic voxel size of 2 mm has around 124.000 voxels of grey 
matter. Thus, when calculating functional connectivity between all 
voxels, more than 15 billion (124.000 ×123.999) functional connections 
would be initially available to predict treatment outcome. Such a large 
number of predictive variables (in machine learning called features) 
cannot be handled by current machine learning classifiers, especially not 
with sample sizes of few hundred patients, which is usually the upper 
limit for longitudinal interventional studies (also known as the curse of 
dimensionality or small-n-large-p-problem; Mwangi et al., 2014). 

The current status of addressing challenges specific to resting-state 
functional connectivity has not been summarized, as previous reviews 
have rather examined the predictive ability across different neuro-
imaging modalities in general (Cohen et al., 2021; J. Lee et al., 2022; Y. 
Lee et al., 2018; Vieira et al., 2022). Furthermore, the majority of these 
reviews lacked a comprehensive quality control that thoroughly exam-
ined the employed machine learning approach (Cohen et al., 2021; J. 
Lee et al., 2022; Y. Lee et al., 2018). The reviews of Y. Lee et al. (2018) 
and Cohen et al. (2021) did address the overall risk of bias to some 
extent by investigating publication bias. However, Y. Lee et al. (2018) 
did not conduct any assessment of study quality. In contrast, Cohen et al. 
(2021) evaluated study quality, including risk of bias, with the 
QUADAS-2 tool, but overlooked the bias introduced by the design of the 
machine learning pipeline, as the tool primarily focuses on the valida-
tion of diagnostic tests. This lack of attention to the risk of bias intro-
duced by the design of the machine learning pipeline is problematic, 
considering the common occurrence of inappropriate applications of 
machine learning in the field (Meehan et al., 2022). Finally, existing 
reviews did not systematically assess which features contributed to a 
successful prediction. 

To fill these gaps, the aim of this systematic review was three-fold: 
First, to examine how well treatment outcomes in internalizing disor-
ders can be predicted by features based on resting-state functional 
connectivity (research question 1 = RQ 1), taking into account the 
studieś risk of bias using the Prediction Model Study Risk of Bias 
Assessment Tool (PROBAST). Second, to assess how features with high 
predictive value were identified (RQ 2.1) and which features were 
particularly important for the prediction (RQ 2.2). Third, to provide an 
overview of how the different studies addressed the curse of dimen-
sionality, i.e. how they reduced the large number of theoretically 
initially available functional connectivities to a small set of features to 
be used in the final classifier(s) (RQ 3). By addressing these questions, 
we aimed to give a realistic estimate of the potential of machine learning 
and resting-state functional connectivity (RQ 1), to assist future re-
searchers in making informed methodological decisions by summarizing 
current practices and identifying methodological shortcomings (RQ 2.1, 
RQ 3), and to provide evidence for an a priori selection of brain regions 
which might be relevant for predicting treatment outcome in future 
machine learning studies (RQ 2.2). 

2. Methods 

2.1. Search strategy and inclusion criteria 

The electronic databases Scopus, PubMed and PsycINFO were 
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searched for relevant studies from inception up the 12th of December 
2022. Search terms encompassed keywords for resting state, primary 
disorder, treatment, and machine learning (see supplement S1 for the 
specific search terms in all databases). Additionally, reference lists of 
eligible studies and review articles were screened. The following in-
clusion criteria were applied: 1) publication in a peer-reviewed journal, 
written in English, 2) analyzing a sample of patients with one of the 
following disorders as primary disorder: unipolar depressive disorders, 
anxiety disorders, obsessive compulsive disorder, or post-traumatic 
stress disorder, 3) predicting outcome to any treatment (behavioral, 
pharmacological, placebo, or neuroscience-informed) that aimed to 
improve the patients` condition 4) using a machine learning approach 5) 
predicting treatment outcome as a categorical outcome 6) reporting at 
least one classifier whose input features are exclusively based on resting- 
state functional connectivity. Anticipating a limited number of studies 
meeting our inclusion criteria, we refrained from delineating any addi-
tional criteria beyond those specified. After an initial abstract screening 
by the first author (CM), all remaining studies were submitted to a full- 
text screening, independently performed by two authors (CM, KH). 
Disagreements were resolved by discussion. The review part has been 
preregistered with PROSPERO (CRD42022370949). The meta-analytic 
summary of classification accuracies was not part of the preregistra-
tion as it was conducted in response to the reviewers` recommendations. 

2.2. Data extraction 

The following data, ordered by research questions, were extracted. 
Study characteristics and RQ 1: first author, year, primary disorder, age 
group, treatment, definition of response and/or remission, sample size, 
way of estimating the underlying functional connectivities, type of 
functional-connectivity-based input features, algorithm(s) of the final 
classifier(s), validation method, classification metrics of the best model 
reported. RQ 2: way of detecting features with high predictive value, 
level of resolution of investigating high predictive values, features that 
showed high predictive value. RQ 3: approaches to reduce the number of 
input features. Data extraction was performed by CM and checked by 
KH. The original table of data extraction as well as a R-script for 
reproducing all our analyses and plots in R (R Core Team, 2020) can be 
found here: https://osf.io/y69ke/. 

2.3. Risk of bias assessment 

The best model of each study was assessed for risk of bias using 
PROBAST (Prediction model study risk of bias assessment tool; Wolff 
et al., 2019), a tool developed for predictive modelling in healthcare. 
Based on 20 signaling questions, each model was judged as having low 
or high risk of bias, in each of four domains (participants, predictors, 
outcome, analysis) and in total. 

2.4. Data synthesis 

2.4.1. RQ 1 Meta-analysis on balanced classification accuracies 
To answer RQ 1 (How well can treatment outcome in internalizing 

disorders be predicted by features based on resting-state functional 
connectivities?), we estimated the mean balanced classification accu-
racy in a meta-analysis using the classification accuracy of each studýs 
best model. We focused on each studýs best model as sufficient perfor-
mance metrics were mostly only reported for those. This has been a 
common procedure in systematic reviews and/or meta-analyses on 
machine learning (e.g., Bondi et al., 2023; Vieira et al., 2022). We chose 
accuracy instead of other metrics such as precision, recall/sensitivity, or 
specificity, which focus on the prediction of one of two classes (either 
response or nonresponse), for two reasons. First, given that current 
models are far from any clinical application, it is unclear whether pre-
dicting one class is more crucial than the other. Therefore, prioritizing 
the evaluation of overall model performance, summarized by accuracy, 

seemed most pertinent. Secondly, opting for accuracy was more prac-
ticable, as it was the only metric consistently reported across all studies. 
In contrast, sensitivity and specificity, the most frequently reported 
metrics among those focusing on the prediction of one of the two classes, 
were absent in 4 out of the 13 studies reviewed. In addition, aggregating 
these metrics across studies would have been challenging, as it was not 
always apparent to which class the metrics referred. For instance, in 
some studies it was unclear whether specificity described the ability to 
predict response or nonresponse. 

However, using the classification accuracy has the disadvantage that 
its meaningfulness diminishes when classes are imbalanced, as accu-
racies above 50% can easily reached by a model that is systematically 
predicting the more frequent class (Thölke et al., 2023). For instance, 
consider a binary classification scenario where nonresponders constitute 
70% of the cases. In this context, a classification accuracy of 70% might 
not truly signify high predictive performance. Instead, it could be 
attributed to a model lacking genuine predictive ability, merely pre-
dicting a nonresponder status for all cases. Some studies with imbal-
anced classes took this into account by reporting the balanced accuracy 
or additional evaluation metrics. The balanced accuracy is commonly 
calculated as the mean of sensitivity and specificity (e.g., Brodersen 
et al., 2010). Hence, when reported, we calculated missing balanced 
accuracy values based on these metrics. However, this could not be done 
for all studies with imbalanced classes. Therefore, we estimated a proxy 
of balanced accuracy for those remaining studies, using the following 
formula: Proxy of balanced accuracy = (raw accuracy – relative fre-
quency of the more frequent class) + 50%. This proxy is based on the 
idea that the accuracy achieved by a dummy classifier always predicting 
the more prevalent class (= the relative frequency of the more frequent 
class) represents the chance-level. The improvement above chance-level 
is thus calculated by subtracting the chance-level from the raw accuracy. 
To get the final proxy of balanced accuracy, it is added to a chance-level 
of 50%, as it would exist when classes are balanced. This formula is not a 
prevalent method in machine learning for taking class imbalances into 
account, as more suitable metrics such as balanced accuracy and AUC 
exist when evaluating a model on original data. Its relevance only 
emerges when summarizing accuracy values across studies and other 
performance metrics controlling for class imbalance are lacking. 

Similar to previous meta-analyses (Y. Lee et al., 2018; Vieira et al., 
2022), we conducted a meta-analysis for proportions, treating accuracy 
values as proportions of correctly classified cases. The R-package meta 
was employed for these analyses (Balduzzi et al., 2019). As we antici-
pated a considerable heterogeneity in classification accuracy between 
studies, we fitted a random effect model and applied Knapp-Hartung 
adjustments (Knapp and Hartung, 2003) to calculate the confidence 
interval around the mean estimated accuracy. All analyses were con-
ducted using Freeman Tukey double arcsine-transformed proportions to 
stabilize error variances (Barendregt et al., 2013). Between-group het-
erogeneity in the random effect model was estimated with the restricted 
maximum likelihood estimator (Viechtbauer, 2005). The mean esti-
mated accuracy under the random effect model was calculated by 
pooling studies accuracies by the inverse of their error variance. Indi-
vidual study confidence intervals were calculated using the 
Clopper-Pearson (i.e., exact binomial interval) method. Heterogeneity 
between studies was evaluated using the I2 statistic and the Cochranés 
Q-test. We interpreted I2 following the recommendations from Higgins 
and Thompson (2002), with 25%, 50%, and 75% as low, moderate, and 
high, respectively. To explore potential sources of heterogeneity, we 
performed subgroup analyses for treatment, diagnosis, and risk of data 
leakage (PROBAST question 4.8) as well as a meta-regression on sample 
size. 

2.4.2. RQ 2 Features with high predictive value 
To answer RQ 2.1 (Which approaches are taken to draw inferences 

about the predictive value of specific features?), we extracted ap-
proaches that were used to assess which feature (sets) contributed or led 
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to a prediction above chance-level and then clustered them qualitatively 
into suitable groups. To account for the expected heterogeneity of ap-
proaches, we used the term “predictive value” instead of “feature 
importance”, as the latter is often used to describe the contribution of a 
feature in a final classifier, which represents only one of various 
methods. 

To answer RQ 2.2 (Which features have high predictive value for the 
prediction of treatment outcome?), we applied a five-step procedure. 
First, we extracted which features were reported to have high predictive 
value. Then, we examined the level of resolution at which these features 
were reported. For instance, certain studies indicated that a singular 
functional connectivity between two brain regions holds predictive 
value, whereas others reported the entire array of functional connec-
tivities between a particular brain region and a subset of other regions as 
having high predictive value. Since the majority of studies fell into the 
second category, we decided to summarize findings across studies at the 
level of brain regions (instead for example, at the level of single func-
tional connectivities). Thus, in a third step, we collected those brain 
regions whose functional connectivity had high predictive value. 
Fourth, we grouped these brain regions into larger areas to provide a 
more comprehensive overview, based on the 22-regions Human Con-
nectome Project multimodal brain parcellation (Glasser et al., 2016; 
Huang et al., 2022), common subcortical areas, and findings from pre-
vious literature. This approach resulted in the following coarse brain 
areas: visual areas, sensorimotor areas, inferior temporal gyrus, middle 
temporal gyrus, superior temporal gyrus, parahippocampal gyrus, su-
perior parietal lobule, inferior parietal lobule, posterior cingulate cor-
tex, anterior cingulate cortex (ACC), medial prefrontal cortex (PFC), 
precuneus, orbitofrontal cortex, ventrolateral PFC, dorsolateral PFC 
(DLPFC), amygdala, hippocampus, insula, basal ganglia, and thalamus. 
The Glasser’s 22-regions parcellation served solely as inspiration for 
categorizing brain regions. We did not align coordinates between brain 
regions and the Glasser parcellation; instead, we relied on the labels 
provided by the studies for grouping. However, it is important to high-
light three key distinctions from the Glasser’s parcellation in our 

approach: First, we merged Glasseŕs visual areas 1–5 into one visual 
area, as this parcellation seemed too fine-grained for our endeavor. 
Second, we splitted Glasseŕs area 19 (ACC and medial prefrontal cortex) 
into ACC, medial PFC, and precuneus, as these regions and their role in 
psychopathology and treatment outcome have been discussed sepa-
rately. Third, we parcellated the temporal lobe in an anatomical way, 
because the Glasseŕs more functionally-based parcellation could not be 
imposed on our studieś findings.Then, in a fifth step, in order to account 
for the fact that not all studies employed whole-brain analyses, we 
assessed for each study and each brain area whether there was an initial 
opportunity to demonstrate high predictive value. This was for example 
not the case for all coarse brain areas when the analysis focused solely on 
functional connectivities within a subset of brain regions or when 
whole-brain analyses were confined to cortical areas. 

2.4.3. RQ 3 Approaches to reduce the number of features 
To answer RQ 3 (Which approaches are taken to reduce the large 

amount of initially available functional connectivities to a small set of 
features to be used in the final classifier(s)?), the extracted approaches 
were grouped into suitable categories (here: approaches that served an 
initial reduction preceding feature generation and approaches that 
served feature reduction). 

3. Results 

3.1. Search results and study characteristics 

The initial search identified 240 unique records. After screening for 
eligibility by title and abstract, 49 studies underwent a full text 
screening. Finally, 13 studies, each using a different sample, were 
included in the systematic review (see flowchart in Fig. 1). 

Even though including a variety of internalizing disorders in the 
search term, most of the finally selected studies predicted treatment 
outcome in patients with unipolar depressive disorders (n = 11), 2 
studies focused on patients with post-traumatic stress disorders, while 

Fig. 1. PRISMA Flowchart. We excluded one study because it did not utilize any baseline features to predict treatment outcomes, even though the explicit criterion 
"Using only baseline features" was not included in our exclusion criteria. However, we interpreted inclusion criterion 3) "Predicting outcome to any treatment" as 
encompassing the use of only baseline features, given our understanding that prediction occurs before treatment. 
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there was no study on patients with obsessive compulsive disorder or 
anxiety disorders fulfilling the inclusion criteria (see Table 1 for study 
characteristics). More specifically, all patients with unipolar depressive 
disorders met the DSM-IV criteria for a major depressive episode, mostly 
evaluated through (semi)-structured interviews such as the SCID or the 
MINI. Patients in studies on PTSD satisfied the DSM-IV criteria for PTSD 
either in full (Zhutovsky et al., 2019) or at least partially (Zhutovsky 
et al., 2021). Criteria were assessed using PTSD-specific semi-structured 
interviews such as the CAPS, or, focusing on children and adolescents, 
the CAPS-CA and the ADIS-P (Zhutovsky et al., 2021). Except for Zhu-
tovsky et al., 2021, all studies exclusively included adult participants. 
Regarding symptom severity, the majority of patients exhibited mod-
erate symptoms, although certain individual studies specifically 
included patients with more severe symptoms (Hopman et al., 2021; van 
Waarde et al., 2015). The treatment patients underwent varied largely 
across studies: 5 studies employed medication (Harris et al., 2022; Kang 
and Cho, 2020; Kong et al., 2021; Pei et al., 2020; Tian et al., 2020; H. 
Wu et al., 2022), 3 studies ECT (Moreno-Ortega et al., 2019; Sun et al., 
2020; van Waarde et al., 2015), 2 studies psychotherapy (cognitive 
behavioral therapy and eye movement desensitization and reprocessing; 
Zhutovsky et al., 2019; Zhutovsky et al., 2021), 2 studies rTMS (Drysdale 
et al., 2017; Hopman et al., 2021), and 1 study mixed medication and 
psychotherapy (Schultz et al., 2018). The diversity in treatments and 
their duration contributed to a large variability in the timing of the 
assessment of post treatment outcome, ranging from 7 weeks (Schultz 
et al., 2018) to 8 months (Zhutovsky et al., 2019). Furthermore, it is 
noteworthy that two studies specifically concentrated on the early 
response to medication, measuring and predicting outcomes after a brief 
period of 2 weeks of treatment (Pei et al., 2020; Tian et al., 2020). 
Treatment outcomes were always measured in terms of symptom 
severity, mostly using clinician-rated measures such as the HDRS 
(HDRS-6, HDRS-17, and HDRS-24) MADRS, and CAPS (More informa-
tion on the definition on treatment outcome can be found in Table 1). 

3.2. RQ 1 Meta-analysis of balanced classification accuracy 

The meta-analysis was based on 13 studies with n = 972 observa-
tions. Aiming to summarize balanced instead of raw classification ac-
curacies, balanced accuracies were calculated from sensitivity and 
specificity for n = 5 studies and estimated using the proposed proxy for n 
= 4 studies. Fig. 2a depicts the difference between raw and balanced 
accuracies for these studies. 

Further details are available in the forest plot displayed in Fig. 3. Our 
analysis revealed substantial between-study heterogeneity, with an 
estimated variance (τ2) of 0.009 (95% CI [0.003; 0.027]). The hetero-
geneity was large, as indicated by a I2 of 75% (95% CI [56%, 85%]) and 
a significant Cochrane’s Q-test (X2(23) = 47.5, p < 0.01). 

In subgroup analyses, neither treatment type, primary disorder, nor 
the presence of data leakage could account for the observed between- 
study heterogeneity, potentially due to limited subgroup sizes. 
Including sample size as a moderator, however, reduced the between 
study heterogeneity to 57.8%. The meta-regression analysis revealed 
that lower sample sizes were associated with higher classification ac-
curacies (ß based on transformed proportions = − 0.0017, t(11) = − 2.5, 
p = 0.0280), explaining around 46% of the observed variance. This 
relationship is depicted in Fig. 2b. Given the significant between study 
heterogeneity, we chose not to create a funnel plot and perform asym-
metry analyses, following various recommendations in the field (Ioan-
nidis and Trikalinos, 2007; Terrin et al., 2003). 

3.3. RQ 2.1 Approaches to evaluate predictive value 

We grouped the approaches used to draw inferences on the featureś
predictive values into three categories: model comparison, selection 
frequency in feature selection, and feature importance in final classifier. 
The majority of studies (n = 6) used model comparison. They built and 

compared models with different sets of input features to assess which set 
showed the best model performance and thus had the highest predictive 
value. The compared feature sets included connectivities of different 
brain regions (Schultz et al., 2018), different combinations of single 
connectivities (Hopman et al., 2021; Moreno-Ortega et al., 2019), or 
subject-specific spatial maps of different independent components (van 
Waarde et al., 2015; Zhutovsky et al., 2019; Zhutovsky et al., 2021). 

The “selection frequency in feature selection” was used by 4 studies 
to draw inferences on the features` predictive value. As previously 
described, employing feature selection techniques is a common practice 
to narrow down the initially available features to a more compact set, 
which is then utilized for the final classifier. When using an internal 
cross-validation technique as almost all our studies did, feature selection 
is applied in each iteration. Thus, features which are selected in most 
iterations are considered as having high predictive value. The studies 
here used different techniques of feature selection such as Wilcoxon rank 
sum test (Drysdale et al., 2017), correlation analysis (Sun et al., 2020), 
SVM with recursive feature elimination (H. Wu et al., 2022), and uni-
variate feature selection (Zhutovsky et al., 2019). 

Feature importances in the final classifier were used by 4 studies to 
assess the featureś predictive value. The category “feature importance in 
the final classifier” comprises approaches which used measures of 
feature importance in the final classifier to investigate the featureś
predictive value. In general, most classifiers have model-specific mea-
sures of feature importance but there exist also a wide variety of model- 
agnostic approaches. Here, the measures of feature importance varied 
across studies with feature weights for SVM (Tian et al., 2020; Zhutovsky 
et al., 2021), position ranking for SVM with recursive feature elimina-
tion (Pei et al., 2020), and feature weights in a spatio-temporal graph 
convolutional network (Kong et al., 2021). Please note that some of the 
12 studies which examined the featureś predictive value applied mul-
tiple approaches. More information on the specific approaches and 
categorization per study can be found in table S1. 

3.4. RQ 2.2 Important brain regions 

As described above, we first examined the level at which features 
with high predictive value were reported in order to identify the most 
suitable level for summarizing findings across studies. Most studies (6/ 
12) reported that that the entire array of functional connectivities of a 
specific brain region had high predictive value and did not focus on, for 
example, single connectivities. The remaining studies reported high 
predictive value on levels that could be easily transferred to a brain 
region level: three studies reported high predictive value for single 
connectivities, three other studies reported high predictive value for 
independent components, that were described in terms of common brain 
regions. In addition, H. Wu et al. (2022) reported high predictive value 
for specific emotion regulation networks. Please see table S2 for the 
categorization per study. It is noteworthy that no study reported high 
predictive value for common functional connectivity networks like the 
default mode or salience network. Thus, we decided to summarize fea-
tures which had high predictive value on a brain region level, applying 
the procedure described above in the methods section. Fig. 4 provides a 
summary of both the absolute and relative frequency with which a brain 
region demonstrated high predictive value. The DLPFC was the region 
whose connectivities were most frequently predictive across studies, 
both in terms of absolute and relative numbers. Other important brain 
regions included sensorimotor areas, visual areas, and the basal ganglia. 

3.5. RQ 3 Approaches to reduce the large amount of theoretically initially 
available functional connectivities 

We categorized approaches taken to reduce the theoretically initially 
large number of available functional connectivities to a more manage-
able set of features into two levels: those serving an initial reduction 
before feature generation and those serving feature reduction after 
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Table 1 
Characteristics of the included studies.  

Study Primary 
disorder 

Treatment Definition treatment 
outcome 

N Responders/ 
nonresponders 

Estimating FCs Input features Algorithm(s) of 
the final classifier 
(s) 

Validation 
method 

Best 
Acc 

Information on 
models tested 

Drysdale, 
2017 

MDD rTMS at 
dorsomedial 
cortex 

response: ≥ 25% ↓ 
HDRS-17  

124 70/54 Pearson 
correlation 
controlled for 
age 

whole-brain between-ROI FCs linear SVM LOOCV 78* no other models 
tested 

Harris, 2022 MDD SSRI response: ≥ 50% ↓ 
MADRS  

144 67/77 Pearson 
correlation, 
partial 
correlation, 
tangent 

whole-brain between-ROI FCs logistic 
regression, linear 
SVM, radial 
kernel SVM, 
random forest 

10-fold CV 58** total number: 240; 
varying: parcellation, 
connectivity 
estimation, 
dimensionality 
reduction and 
classifiers; 
accuracies: 39% - 
61% 

Hopman, 
2021 

MDD rTMS at left 
DLPFC 

response: ≥ 50% ↓ 
MADRS  

61 33/28 Pearson 
correlation 

4 specific ROI-to-cluster FCs: 
subgenual anterior cingulate cortex 
(sgACC) - frontal pole (l), sgACC - 
superior parietal lobule (l), sgACC - 
lateral occipital cortex (l), dorsolateral 
PFC (l) - central opercular cortex (l) 

linear SVM 1-fold V 85** total number: 14; 
varying: features; 
accuracies: ca. 38% - 
89% 

Kong, 2021 MDD antidepressants response: ≥ 50% ↓ 
HDRS-24  

82 40/42 Pearson 
correlation per 
sliding window 

whole-brain between-ROI FCs spatio-temporal 
GCN, GCN, deep- 
auto encoder, 
random forest, 
SVM 

10-fold CV 89* total number: 5; 
varying: classifiers; 
accuracies: ca. 50% - 
90% 

Moreno- 
Ortega, 
2019 

MDD ECT remission: HDRS- 
24 ≤ 7  

18 9/9 no information 5 specific between- & within-ROI FCs: 
dorsolateral PFC (p9–46v) - Fundal 
area of the superior temporal sulcus 
within MT+ Complex, dorsolateral 
PFC (p9–46v) - MT+ Complex, 
dorsolateral PFC (46) - subgenual 
anterior cingulate cortex, connectivity 
within the ventral stream visual 
cortex, connectivity within 10r (part of 
medial prefrontal cortex) 

logistic 
regression 

LOOCV 89 total number: 9; 
varying: combination 
of features; 
accuracies: 72% - 
89% (mean: 83%) 

Pei, 2020 MDD SSRI/SNRI response: ≥ 50% ↓ 
HDRS-6  

98 54/44 Pearson 
correlation 

seed-based whole-brain connectivity 
of 14 ROIs (all l/r): 
orbital part of superior frontal gyrus, 
triangular part inferior frontal gyrus, 
insula, anterior cingulate gyrus, 
paracingulate gyrus, posterior 
cingulate gyrus, hippocampus, 
amygdala 

linear SVM with 
RFE 

LOOCV 81* total number: 2; 
varying: subset vs. 
whole-brain analysis; 
accuracies: 81% 

Schultz, 
2018 

MDD SSRI/Alpha2- 
receptor- 
antagonists/AAP/ 
CBT 

response: ≥ 50% ↓ BDI  21 7/14 Pearson 
correlation 

between-ROI FCs between 13 ROIs: 
subgenual anterior cingulate cortex (l/ 
r), amygdala (l/r), intraparietal sulcus 
(l/r), dorsolateral PFC (l/r), anterior 
insula (l/r), dorsal anterior cingulate 
cortex, medial PFC, precuneus 

polynomial 
kernel SVM 

LOOCV 72** total number: 13; 
varying: features; 
accuracies: 44% - 
89% 

Sun, 2020 MDD & 
BPD 

ECT remission: HDRS-17 
<7; 
response: > 50% ↓ 
HDRS-17;  

122 47/75; 
71/51 

Pearson 
correlation 

whole-brain between-ROI FCs (multiple) linear 
regression, 
applying 

LOOCV, 10- 
fold-CV 

67* total number: 9 
varying: binary 
outcome, validation 
technique and 

(continued on next page) 
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Table 1 (continued ) 

Study Primary 
disorder 

Treatment Definition treatment 
outcome 

N Responders/ 
nonresponders 

Estimating FCs Input features Algorithm(s) of 
the final classifier 
(s) 

Validation 
method 

Best 
Acc 

Information on 
models tested 

binarization 
afterwards 

features; 
accuracies: 58% - 
75% (mean: 67%) 

Tian, 2020 MDD SSRI response: ≥ 50% ↓ 
HDRS-17 after 8 weeks; 
nonresponse: less than 
20% ↓ after 2 weeks OR 
less than 50% ↓ after 8 
weeks  

106 56/50 Pearson 
correlation per 
sliding window 

node flexibilities per ROI linear SVM LOOCV, 
leave-one- 
site-out 

68** total number: 4; 
varying: validation 
technique; 
accuracies: 69% - 
79% (mean: 73%) 

van Waarde, 
2015 

MDD ECT remission: MADRS ⩽10  45 25/20 Dual regression subject-specific spatial maps linear SVM LOOCV 85 total number: 25; 
varying: features; 
2 of 25 models got 
significant 

Wu, 2022 MDD SSRI remission: HDRS-17 
scores ≤ 7  

67 28/39 Pearson 
correlation 

between-ROI FCs between 36 emotion 
regulation regions of 4 networks: 
network 1: medial superior frontal 
gyrus (l, BA 8), middle frontal gyrus (r, 
BA 8), inferior parietal lobule (l/r, BA 
40), medial PFC (l, BA 10), middle 
frontal gyrus (l, BA 6), middle frontal 
gyrus (r, BA 11), insula (r), cingulate 
gyrus (r, BA 23), precuneus (r); 
network 2: inferior frontal gyrus (l/r, 
BA 47), superior frontal gyrus (l, BA 6), 
superior temporal gyrus (l, BA 39), 
middle temporal gyrus (l, no BA), 
middle frontal gyrus (l, BA 6), superior 
frontal gyrus (l, BA 9), caudate (l), 
tuber (r); 
network 3: amygdala (l/r), fusiform 
gyrus (l/r, BA 37), thalamus (r), 
parahippocampal gyrus (l), medial 
PFC (bilateral, BA 10), inferior 
occipital gyrus (l, BA 19); 
network 4: postcentral gyrus (l/r, BA 
2), insula (l, BA 13), superior parietal 
lobule (l, BA 7), cuneus (l, BA 18), 
middle occipital gyrus (l, BA 19), 
thalamus (r), precuneus (r, BA 19), 
posterior cingulate (r, BA 30) 

linear SVM LOOCV 81* no other models 
tested 

Zhutovsky, 
2019 

PTSD CBT/EMDR response: ≥ 30% ↓ 
CAPS  

44 24/20 Dual regression subject-specific spatial maps Gaussian process 
classifier 

10 × 10-fold 
CV 

81 total number: 48; 
varying: features; 
1 of 48 models got 
significant 

Zhutovsky, 
2021 

(partial) 
PTSD 

CBT/EMDR response: ≥ 30% ↓ 
CAPS-CA  

40 21/19 Gig ICA, 
Pearson 
correlation, 
partial 
correlation 

subject-specific spatial maps, 
connectivity between independent 
components 

linear SVM 50 ×5-fold 
CV 

76 total number: 50; 
varying: features and 
types of features 
(within- and between- 
network 
connectivity); 
1 of 50 models got 
significant 

Only the balanced accuracy (Acc) of the best model of each study is reported. The asterisk denotes studies for which balanced accuracy was calculated from sensitivity and specificity. The double asterisk denotes studies for 
which a proxy of balanced accuracy was used. Abbreviations: N = Sample size, FC = functional connectivity, Acc = Accuracy, MDD = major depressive disorder, BPD = bipolar disorder, PTSD = post-traumatic stress 
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feature generation. Both were part of our research question. The ap-
proaches each study took and their categorization can be seen in table 
S3. 

Around one third of studies (n = 5) ignored the theoretically large 
amount of initially available connectivities by focusing a priori on spe-
cific brain areas and/or connectivities selected according to prior liter-
ature and theoretical assumptions. Other studies explored whole-brain 
functional connectivity but streamlined the number of connectivities for 
investigation. This was achieved by transitioning from the theoretically 
available voxel-level to either a brain region level, employing atlas- 
based parcellations (n = 6), or an independent-component level, uti-
lizing data-driven parcellations (n = 3). 

In terms of feature reduction after feature generation, the majority of 
studies employed feature selection techniques (n = 11). Among them, 
seven studies utilized so-called filter techniques, which use traditional 
statistical measures such as correlation coefficients or t-tests to rank 
features based on their capacity to differentiate between groups. Two 
other studies employed wrapper techniques, wherein the final classifier 
is trained in an inner loop to select features based on their importance in 
the classifier (see Brakowski et al., 2017; Guyon and Elisseeff, 2000; 
Mwangi et al., 2014 for an overview of feature selection techniques). In a 
separate set of studies, the number of input features for the final clas-
sifier was diminished by distributing the features across multiple models 
(n = 7). Furthermore, three studies implemented diverse methods of 
dimensionality reduction post feature generation, including principal 
component analysis, layering within a convolutional graphical network, 
or aggregation. 

3.6. Risk of bias 

All studies were rated as having a high risk of bias. The most common 
reasons were in the analysis domain, including small sample size, uni-
variate feature selection, and data leakage. A summary of risk of bias is 
depicted in figure S1, the PROBAST rating for each study is presented in 
table S4. The most frequent problem was a small sample size, as none of 
the studies met the PROBAST criterion which requires a number of non- 
responders that is 10 times larger than the number of candidate features. 
A further, potentially very severe problem was data leakage, occurring 
in internal validations, when information from the test set “leaks” into 
the training set and thus information from the test set is used to train the 
model. Data leakage highly increases the risk of overestimation as the 
model can use information which would not be available in a natural-
istic setting. Here, data leakage occurred as feature selection (Hopman 
et al., 2021; Moreno-Ortega et al., 2019) and independent component 
analysis (van Waarde et al., 2015) were performed on the whole data 
set. Another reason for high risk of bias were univariate feature selection 
methods. Univariate feature selection methods include any procedure 
testing single features for statistically significant relations or 
group-differences without taking multivariability into account. Uni-
variate feature selection can cause both under- and overestimations of 
performance accuracies (Jong et al., 2021). Underestimation might 
result as multivariable patterns with high predictive value in machine 
learning algorithms being able to handle multivariable data might not 
be selected (Jong et al., 2021). Overestimation can emerge as univariate 
selection is more biased to singularities in the data (Jong et al., 2021). 
Another procedure that was not assessed with the PROBAST rating but 
can also increase risk of bias is the simultaneous testing of several final 
models. Most studies (8/13) tested more than one final model, varying 
feature subsets (e.g., Zhutovsky et al., 2019), classifiers (e.g., Tian et al., 
2020), and machine-learning pipelines (e.g., Harris et al., 2022). As 
most studies reported sufficient performance metrics only for their best 
model(s), we quantitatively summarized the studies` best models` 
metrics to assess the predictability of treatment outcome – a common 
procedure in systematic reviews and/or meta-analyses on machine 
learning (e.g., Bondi et al., 2023; Y. Lee et al., 2018; Vieira et al., 2022). 
However, performance metrics of the best one of several final models are di
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likely to overestimate the modeĺs performance: In a naturalistic setting, 
the best model cannot be chosen retrospectively as it should inform the 
practitioneŕs further actions before the beginning of treatment. 

4. Discussion 

The present review and meta-analysis aimed to give an overview of 
studies using resting-state functional connectivity to predict treatment 
outcome in internalizing mental disorders. An extensive literature 
search resulted in 13 studies which predicted outcome to a wide range of 
treatments, including medication, ECT, psychotherapy, and rTMS and 
focused mainly on patients with depression. The estimated mean 
balanced classification accuracy was 77%. A close examination of the 
connectivities which led to a successful prediction showed that the 
connectivity of the dorsolateral prefrontal cortex had high predictive 
value across treatments. The PROBAST rating revelated that all studies 
suffered from high risk of bias, being especially caused by inappropriate 
methodological choices. 

4.1. Model performance in the light of high risk of bias 

The estimated mean balanced classification accuracy of 77% of the 

Fig. 2. Difference between raw and balanced accuracies (A) and sample size as moderator in meta-regression (B).A) The difference between balanced and raw 
accuracy is only depicted for studies that did not report balanced accuracy in the presence of imbalanced classes. The asterix (*) denotes studies where a proxy of 
balanced accuracy was calculated due to missing information. B) The size of the dots represents the weight of the studies in the meta-analysis. The line is the fitted 
regression line. Please note that the original meta-regression was performed on the double arcsine transformed proportions. Abbreviations: ECT = electroconvulsive 
treatment, rTMS = repetitive transcranial magnetic stimulation. 

Fig. 3. Forest plot of a random-effect meta-analysis on the balanced accuracy values of the studies` best models.  

Fig. 4. Absolute and relative frequencies of studies in which a brain area had 
predictive value. Only brain areas that had predictive value in more than 30% 
of studies are depicted. The numbers in the bars represent the absolute number 
of studies in which the brain area had predictive or no predictive value. The 
brain areas are arranged in descending order following their relative frequency. 
Abbreviation: PFC = prefrontal cortex. 
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studies’ best models reflect that treatment outcome can be predicted 
better than chance-level. However, the PROBAST rating revealed that all 
included studies suffered from high risk of bias. The most frequent 
reasons for high risk of bias were in the analysis domain, including small 
sample sizes (range: 18 – 144), univariate feature selection methods, and 
data leakage. Moreover, the simultaneous testing of multiple models 
represented another source of risk of bias that has not been considered 
by the PROBAST rating (see a more detailed explanation of these factors 
in the results section). 

Additionally, further exploration of meta-analyses indicated that 
small sample sizes were associated with elevated classification accu-
racies, implying a potential overestimation of predictive performance of 
studies with small-sample sizes. This pattern is consistent with findings 
in other reviews (e.g., Steele et al., 2018; Vieira et al., 2022). In general, 
small sample sizes in cross-validation may cause both over- and un-
derestimation of predictive performance on unseen data, as the preci-
sion of the model performance, serving as the estimator of model 
performance on unseen data, decreases with smaller sample sizes 
(Varoquaux, 2018). The observed association with higher accuracies, 
both in this study and others, can be attributed to scientific communitýs 
tendency to present high classification accuracies (so-called filter effect 
(Varoquaux, 2018). This interplay is similar to the impact observed in 
classical statistics with small sample sizes (Button et al., 2013). 

Thus, given the high risk of bias across studies and the over-
representation of small studies likely overestimating the true perfor-
mance, we consider the estimated mean classification accuracy of 77% 
as an optimistic upper bound of potential prediction performance rather 
than a proof of principle. Whether machine learning and functional 
connectivity are able to predict treatment outcome remains an open 
question which can only be answered by further studies applying state- 
of-the-art-machine learning methods lege artis, using larger sample sizes 
and employing external validation. 

4.2. Far from clinical application 

Given the high risk of bias previously discussed and particularly the 
lack of external model validations, our results indicate that models 
predicting treatment outcome are still far from any clinical application. 
A similar picture emerges for other mental disorder or neuroimaging 
variables, with reviews or meta-analyses reporting a wide range of 
prediction performance across studies, a lack of external validation 
studies, and, if assessed, a high risk of bias for the included studies (Del 
Fabro et al., 2023; Vieira et al., 2022; Watts et al., 2022). Thus, our 
review underscores that the application of machine learning and neu-
roimaging variables to predict treatment outcome is still far from any 
clinical application, regardless of mental disorder and neuroimaging 
modality. 

However, even if a model based on resting-state functional connec-
tivity was successfully validated on multiple external datasets, 
numerous considerations would still precede a clinical application. One 
of those would be a thorough cost-benefit analysis that considers the 
specific context and purpose of the application, the model performance, 
and the monetary costs of collecting the fMRI data. Moreover, aligning 
with the Research Domain Criteria (RDoC) framework (Cuthbert, 2014), 
it should be explored whether the functional connectivity patterns 
which drove the final predictions could be reflected on other units of 
analysis, such as behavior or physiology, which are more readily 
assessable. Furthermore, it is important to note that a model which 
predicts the outcome to a single treatment, as those included here, may 
not directly contribute to treatment allocation. The direct utility for 
treatment allocation arises when combining models for different treat-
ments, as demonstrated in approaches like the personalized advantage 
index (DeRubeis et al., 2014), or when generating models that explicitly 
recommend one treatment over others. Nevertheless, a model which 
predicts the outcome to a single treatment holds value by aiding in 
developing new treatments or add-ons for patients unlikely to respond. 

Additionally, it could protect patients from undergoing an invasive and 
high-risk treatment with a low likelihood of success. 

4.3. Important brain regions 

Connectivities of the DLPFC (here including BA 6, 8, 9, and 46 
following the parcellation of Glasser et al., 2016) had high predictive 
value in the highest number of studies, both in terms of absolute and 
relative frequency. The DLPFC is part of the central executive network 
(CEN, also called frontoparietal network; Seeley et al., 2007) that sup-
ports decision-making, emotion-regulation, and working memory 
(Menon, 2011). Connectivity of DLPFC and CEN has been associated 
with depression (see meta-analysis of Brandl et al., 2022) and has shown 
treatment-induced changes after ECT and rTMS (see reviews of Bra-
kowski et al., 2017; Porta-Casteràs et al., 2021). Moreover, even though 
being less consistent, pretreatment connectivity of DLFPC and CEN has 
been associated with treatment outcome in several studies (see review of 
Taylor et al., 2021). 

Additional support for the hypothesis that the DLPFC might play an 
important role in the etiology and maintenance of depression comes 
from lesion-based network mapping, showing that lesions associated 
with depression can be mapped to a common circuit that is centered in 
the DLPFC (Padmanabhan et al., 2019). In a similar vein, a recent 
analysis of task-based fMRI data targeting altered emotional and 
cognitive processing in depression revealed two robust circuits of altered 
emotional and cognitive processing which both included the DLPFC 
(Cash et al., 2023). Interestingly, the abnormal emotion circuit included 
the left DLPFC, while the abnormal cognition circuit included the right 
DLPFC, suggesting that a closer look at the DLPFC might be beneficent, 
both in terms of lateralization and parcellation into subparts (e.g., Cie-
slik et al., 2013). 

Other brain areas with a relative frequency larger 50% were visual 
and sensorimotor areas. Visual and sensorimotor areas included both 
lower sensory processing areas, such as the V3 (Drysdale et al., 2017; 
Tian et al., 2020) and primary sensorimotor cortices (Drysdale et al., 
2017; van Waarde et al., 2015; H. Wu et al., 2022) as well as higher 
sensory processing areas, such as the fusiform faces complex (Sun et al., 
2020; H. Wu et al., 2022) and the (pre-)supplementary motor area (Tian 
et al., 2020; Zhutovsky et al., 2019). Aberrant low- and high-level visual 
processing and sensorimotor functioning in depression have been re-
ported in several studies, both on a behavioral (e.g., Bennabi et al., 2013; 
Brakowski et al., 2017; Bubl et al., 2010) and neural level (e.g., Chen 
et al., 2022; Liu et al., 2022; Ray et al., 2021; Zeng et al., 2012). 
Moreover, a recent study describing the braińs functional connectivity 
profile in terms of a principal functional similarity gradient showed that 
gradient differences between patients with depression and healthy 
controls were mainly rooted in areas of the visual, sensorimotor and 
default-mode network (Xia et al., 2022). However, in most recent 
meta-analyses, alterations in visual or sensorimotor neural processing in 
depression did not reach significance (e.g., meta-analyses of Brandl 
et al., 2022; Gray et al., 2020). Additionally, studies investigating 
and/or reporting associations between pretreatment neural processing 
in visual or sensorimotor areas and treatment outcome have been rare. 
Although Dichter et al. (2015) reported pretreatment connectivity dif-
ferences in visual recognition circuits between responders and 
non-responders as one of their key findings, this pattern only emerged in 
4 of the 21 studies reviewed. Thus, together with current literature, the 
relatively high predictive value of visual and sensorimotor areas sug-
gests that functional connectivity of these areas plays a role in psycho-
pathology and treatment outcome of depression but might be more 
difficult to detect or might only be relevant for a subgroup of patients. 

The basal ganglia, which include subcortical nuclei like caudate, 
putamen (striatum) and globus pallidus, showed predictive value in half 
of the possible studies. Interestingly, three out of the four studies in 
which the basal ganglia had no predictive value used independent 
component analysis (ICA), suggesting that ICA might be less suitable to 
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detect connectivities of the basal ganglia. Indeed, even though a basal 
ganglia network, comprising basal ganglia components and the thal-
amus, can be detected in ICA (Robinson et al., 2009), this is often not the 
case, possibly because of the low proportion of variance it explains 
(Robinson et al., 2009). Thus, considering the basal ganglias` involve-
ment in cognitive, emotional, and reward processing (e.g., Chakrabarty 
et al., 2016; Pierce and Péron, 2020), their association with anhedonia 
(e.g., Borsini et al., 2020; Brandl et al., 2022; Gray et al., 2020) and the 
target role of ventral striatum and nucleus accumbens in deep brain 
stimulation (Drobisz and Damborská, 2019; Y. Wu et al., 2021), we 
suggest to explore the predictive value of basal ganglia functional con-
nectivity with alternative methods. 

It is noteworthy that the functional connectivity of other areas 
commonly involved in the etiology of depression, such as amygdala, 
insula and anterior cingulate cortex, showed no high predictive value in 
our analysis. This underscores that neurological correlates of mental 
disorders may not inherently predict treatment outcome. Other factors, 
such as plasticity and compensatory neurological mechanisms, could 
play a more pivotal role. Additionally, capacities like emotion regula-
tion, with distinct correlates from the disorder, may significantly 
contribute to predicting treatment outcome. 

Furthermore, it is important to note that our examination was 
limited to brain areas whose connectivity demonstrated high predictive 
value across treatments. The investigation of treatment-specific con-
nectivities with high predictive value was not feasible due to the limited 
number of studies and high treatment heterogeneity. As a result, our 
analysis focused solely on identifying brain regions whose connectivities 
might predict treatment outcome regardless of treatment type. 
Following the concept outlined by Simon and Perlis (2010), these con-
nectivities could be characterized as general predictors of prognosis or 
general predictors of treatment response. According to Simon and Perlis 
(2010), distinguishing between these two groups requires studies pre-
dicting response to placebo treatment. If predictors also showed high 
predictive value in placebo studies, they would be considered general 
predictors of prognosis; if not, they could be seen as general predictors of 
treatment response. However, as none of the studies in our analysis used 
a placebo, we were unable to make this distinction. Nevertheless, irre-
spective of the accurate characterization, which is less crucial from a 
machine learning perspective, functional connectivities of the DLPFC, 
visual, and sensorimotor areas appear to contribute significantly to the 
correct prediction of machine learning models and should therefore be 
considered in future models. 

4.4. Methodological approaches and recommendation 

We summarized current methodological approaches to assist future 
researchers in making informed decisions regarding two questions: 1. 
Which approaches are taken to draw inferences about the predictive 
value of specific features? (RQ 2.1), 2. Which approaches are taken to 
reduce the large amount of theoretically initially available functional 
connectivities to a small set of features to be used in the final classifier 
(s)? (RQ 3) 

Regarding the first question (RQ 2.1), approaches taken to draw 
inferences about the featureś predictive value, we identified three 
distinct groups of methodologies that were mostly employed exclu-
sively: model comparison, selection frequency in feature selection, and 
feature importance in final classifier. As these approaches evaluate the 
predictive value of features on distinct levels, we refrain from favoring 
one over the other and view them as complementary. For instance, a 
high selection frequency in feature selection indicates that a feature was 
included in the final model in most iterations but does not necessarily 
imply that this feature also drove the final prediction. We recommend, 
therefore, deviating from common practice by assessing predictive value 
on multiple levels when suitable. We advise consistently evaluating 
feature importance in the final classifier and to assess selection fre-
quency when employing feature selection, even when the primary goal 

is to compare the predictive value of different features by comparing 
distinct models (for a review of different measures of feature importance 
see Mi et al., 2020). This approach ensures a comprehensive under-
standing of predictive value and helps to detect potential errors or un-
expected model behavior. 

Concerning the second methodological question (RQ 3), approaches 
taken to reduce the large amount of theoretically initially available 
functional connectivities, we observed a common procedure, that 
accommodated a diverse array of approaches. First, all studies per-
formed some kind of initial reduction before feature generation by either 
selecting specific brain areas and/or connectivities or parcellating the 
whole-brain data in a data- or atlas-based manner. Second, after 
generating functional-connectivity based features (e.g., functional con-
nectivities themselves, node flexibilities, or subject-specific spatial 
maps), the majority of studies further diminished the number of input 
features by employing feature selection techniques (mainly filter tech-
niques) and/or distributing features to multiple models. The specific 
approaches varied among all studies, even when calculating the same 
type of features. This methodological heterogeneity underscores the lack 
of standards in dealing with the large amount of theoretically available 
functional connectivities making the comparison of study findings more 
challenging. Therefore, further studies are needed to systematically 
explore the effects of various methodological choices across different 
data sets in order to provide general recommendations. 

Regarding approaches that involve an initial reduction before feature 
generation, we refrain from providing explicit recommendations. Both 
methods, namely a priori selection of functional connectivities and 
whole-brain analysis with a parcellation technique, have their respec-
tive advantages and drawbacks. While the number of features generated 
after a priori selection may be more manageable for machine learning 
within the current scope, this approach may only be valid if the selection 
is thoroughly justified, which is often not the case. 

In contrast, regarding approaches that serve feature reduction after 
feature generation, we would like to highlight several shortcomings that 
should be addressed in future studies. First, the most commonly 
employed approach, feature selection via filter techniques, increases the 
risk of bias due to the inherent univariance of filter techniques. This risk 
of bias emerges as these techniques are unable to select multivariate 
patterns with high predictive value (Mwangi et al., 2014). Hence, we 
recommend employing more sophisticated feature selection techniques 
such as wrapper and embedded methods, being more suitable for 
multivariate data (Mwangi et al., 2014). Second, the other frequently 
utilized approach, allocating features to different models, also amplifies 
the risk of bias in its typical implementation. Most studies tested several 
models in parallel and reported the prediction accuracy of the best 
model as estimate of prediction performance. As pointed out in the re-
sults section, this procedure might induce bias, as in a naturalistic 
setting, the best model cannot be chosen retrospectively; it should 
inform the practitioneŕs further actions before the beginning of treat-
ment. To reduce the risk of bias without employing an additional 
external validation, we recommend to train one final second-level model 
on the predictions of several first-level models, as applied by Pei et al. 
(2020). 

5. Limitations 

Our review has several limitations. First, even though commonly 
applied (e.g., Y. Lee et al., 2018; Vieira et al., 2022), the suitability of 
using meta-analysis for proportions in synthesizing cross-validation ac-
curacies is not conclusively established. Potential issues emerge in terms 
of estimating the error variance (the square of standard measurement 
error) which is typically used to weight the studies’ results in the 
meta-analysis. In general, there might be no unbiased estimator of error 
variance for classification accuracy in cross-validation (for an overview 
of methods to estimate the error variance in cross-validation see Bates 
et al., 2023). Moreover, the use of an error variance estimator originally 
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developed for proportions overlooks the impact of certain 
cross-validation types, like leave-one-out, on increasing error variance 
(Varoquaux, 2018). Additionally, assumptions underlying the estima-
tion of error variance for proportions, such as each subject having an 
equal chance of being a case, do not hold in cross-validation, where the 
probability of being a case (= being correctly classified) varies for each 
training-test split. Despite these limitations, we maintain that this 
meta-analysis remains valuable in providing a numerical estimate of the 
current predictive capability for treatment outcome. Future research 
should dedicate attention to addressing this issue and developing 
guidelines for conducting meta-analyses of classification accuracies 
based on cross-validation. 

Second, all studies included had a high risk of bias. Therefore, the 
results presented here should be interpreted with caution. Please note 
however that this caveat applies to most systematic reviews in precision 
healthcare as the PROBAST rating has revealed high risk of bias of 
predictive modelling in healthcare, notably due to methodological 
weaknesses in the analysis domain (Jong et al., 2021; Meehan et al., 
2022). Third, even though we initially intended to give an overview 
about the current state of treatment outcome prediction in a wide 
spectrum of internalizing mental disorders, including also anxiety dis-
orders and obsessive-compulsive disorders, we eventually only included 
studies on depression and post-traumatic stress disorder. This was not 
due to a lack of studies predicting treatment outcome in anxiety disor-
ders and obsessive-compulsive disorders per se, but due to a lack of 
studies fulfilling our inclusion criteria, such as using a machine learning 
approach (Chen et al., 2022; Göttlich et al., 2015) or applying a model 
being only based on resting-state functional connectivity (Reggente 
et al., 2018; Whitfield-Gabrieli et al., 2016). The sample of included 
studies is thus not fully representative of the entire spectrum of inter-
nalizing mental disorders, and it is not clear to which extent our results 
are also valid for other, initially targeted internalized disorders. Fourth, 
we summarized important brain regions based on study-specific labels 
instead of using more sophisticated approaches such as 
coordinate-based meta-analysis, because a substantial proportion (4 out 
of 12) of the studies included lacked adequate coordinate information, 
mainly due to using methods that typically do not provide such infor-
mation. Additionally, it is important to note that the initial screening 
was conducted by a single individual, which may not adhere to 
gold-standard practices. 

6. Conclusion and further directions 

The objective of this review was to provide a comprehensive over-
view of studies utilizing resting-state functional connectivity to predict 
treatment outcomes in internalizing mental disorders across a spectrum 
of treatments, encompassing psychotherapy, pharmacotherapy, rTMS, 
and ECT. Our meta-analysis indicated that treatment outcome can be 
predicted based on resting-state functional connectivity, with a mean 
estimated balanced accuracy of 77% (95% CI: [72%- 83%]). However, 
aiming to give a realistic estimate of the potential of machine learning 
and resting-state functional connectivity, we underscored the need to 
interpret these values cautiously, considering them more as an opti-
mistic upper limit of potential prediction performance. This caution 
stems from the influence of small sample sizes systematically biasing the 
results and a notable risk of bias, as evaluated through PROBAST. A 
closer look at connectivities which drove a successful prediction high-
lighted the important role of the dorsolateral prefrontal cortex and 
raised awareness of two other, previously rather neglected groups of 
brain areas: visual and sensorimotor areas. In future studies conducting 
an a priori feature selection for predicting treatment outcomes, it is 
advisable to contemplate the inclusion of functional connectivities from 
these specific areas. Moreover, summarizing current methodological 
practices and employing PROBAST, we have identified several meth-
odological choices that should be considered in future studies. These 
include the use of larger sample sizes, potentially through collaborative 

efforts, evaluating predictive value on several levels, opting for multi-
variable instead of univariate feature selection techniques, and gener-
ating one final 2nd-level model when comparing models based on 
different feature sets. 

Besides these methodological choices, current developments might 
further leverage the predictive ability of resting-state functional con-
nectivity. First, state-of the-art methods to estimate functional connec-
tivities might lead to better and more robust predictions (see review 
here; Colclough et al., 2018), mitigating the problems of the typically 
used Pearson correlations which suffer from a low signal-to-noise-ratio 
(Pervaiz et al., 2020) and lack a distinction between direct and indi-
rect connectivities (Smith et al., 2011). Second, another promising 
avenue might be measures which summarize a regions` or networks` 
connectivity in an informative manner, such as graph metrics (Rubinov 
and Sporns, 2010), circuit scores (e.g., Goldstein-Piekarski et al., 2022), 
and functional-similarity gradients (Haak et al., 2018). Lastly, another 
fruitful development could involve characterizing single-subject con-
nectivity by framing them as deviations from those observed in healthy 
controls. Both straightforward methods, such as quantifying measures as 
z-deviations (Goldstein-Piekarski et al., 2022), and more complex 
methods, such as normative modelling (Marquand et al., 2019), might 
be beneficent. The approaches have the potential to better capture 
inter-subject heterogeneity of functional connectivity and to reduce the 
impact of noise. 
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