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service providers (3). Assuming that such 
hidden costs are high would shift the mar-
ginal abatement cost curve a bit upward 
but not to the right, leaving a substantial 
discrepancy. In any case, because the 
uncertainties in the IPCC outcomes are 
substantial, the assessment leaves room 
for explanations other than unrecognized 
hidden costs.

Kotchen et al. say that they “are not 
aware of…efforts to cross-validate top-
down mitigation cost assumptions with 
bottom-up empirical estimates.” But miti-
gation potentials and their costs are highly 
dynamic, as demonstrated by comparing 
the findings of the 2022 IPCC assessment 
report (4) with the conclusions in the 2007 
report (5). Over 15 years, the total mitiga-
tion potential has increased substantially, 
by 40 to 100%, even though the part of the 
potential that has already been imple-
mented is omitted from the analysis. 

The shifts vary between sectors. For the 
buildings sector, the low-cost potential has 
declined; if new buildings during the inter-
vening 15 years were not built according 
to the best available technology, then their 
associated potential is foregone. For the 
energy supply sector, however, there is a 
massive increase of low-cost potential due 
to the rapid innovation of solar and wind 
technology. 

New options have also entered the 2022 
analysis, such as recycling and mate-
rial efficiency, dietary changes, food loss 
prevention strategies, and modal shifts in 
transportation. Mitigation potentials, even 
for one specific year (2030) are changing 
over time, and overall mitigation potentials 
tend to increase and become cheaper.

Given the strong dynamics in mitiga-
tion potentials, the lack of cross-validation 
among various approaches implies that 
models such as DICE, FUND, and PAGE 
are, in their current form, not fit to be used 
as a tool for climate change cost-benefit 
analysis. Updating of these models is badly 
needed.
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Response
Blok et al. characterize our Policy Forum 
as an indictment of the Intergovernmental 
Panel on Climate Change’s (IPCC’s) 
estimates of mitigation costs, but that 
was not our intention. We agree with 
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Accurately interpreting 
IPCC assessments
In their Policy Forum, “The costs of ‘cost-
less’ climate mitigation” (1 December 2023, 
p. 1001), M. J. Kotchen et al. assert that 
the greenhouse gas mitigation poten-
tial identified by the Intergovernmental 
Panel on Climate Change (IPCC) in its 
latest assessment report is larger and 
cheaper than what is found in widely used 
cost-benefit–based (as opposed to process-
based) integrated assessment models such 
as DICE, FUND, and PAGE. They suggest 
that the IPCC report underestimates the 
costs of mitigation by excluding hidden 
or nonmonetary costs in various sectors. 
Their criticism of the IPCC assessment 
is unfounded. 

 Kotchen et al. address the discrepancy 
between the mitigation potential curves 
based on various models by excluding 
options with “negative costs” from the cost 
curve derived from the IPCC data (first 
figure, bottom panel, in the Policy Forum). 
They justify the change by suggesting that 
the negative-cost options do not account 
for hidden costs. However, hidden costs 
have been extensively studied, and they 
have been quantified only to a small extent 
(1, 2). There is no evidence that they can 
fully compensate for the negative costs. 
The focus in these studies was on energy 
efficiency options, which make up only 
part of the negative cost potential. Also, 
hidden costs can be reduced by adequate 
measures such as stimulating energy 

Solar technology has increased the energy 
sector’s low-cost potential, but challenges persist.
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Blok et al.’s call to continually update the 
economics-focused integrated assessment 
models. This action, along with more 
cross-validation between bottom-up and 
top-down approaches, is precisely the goal 
of the piece. 

We disagree with Blok et al. that there is 
limited evidence showing hidden costs to 
mitigation activities. Given that the IPCC 
suggests that 16% of emissions reduc-
tions cost less than zero dollars, the fact 
that global emissions are not on track to 
decrease by anywhere near 16% by 2030, 
even with many policy interventions in 
place, serves as evidence of costly bar-
riers (1). Moreover, the literature on the 
energy efficiency paradox, which we cite 
in our Policy Forum, is full of examples in 
which the direct cost savings of mitiga-
tion activities are overly optimistic. We are 
encouraged by work that diagnoses the 
source of estimated shortfalls in certain 
cases and also designs ways to overcome 
them (2, 3). 

We agree with Blok et al. that accounting 
for hidden costs would shift the marginal 
cost curve vertically. We proposed a left-
ward shift only to illustrate the source of 
the discrepancy between approaches rather 
than to identify the correct estimates. We 
did not mean to suggest that the actions 
that the IPCC treat as zero-cost abatement 
opportunities should be dismissed entirely, 
nor do we assert that this would address 
the discrepancy. However, the critical 
question is how much these actions cost 
when doing a full cost accounting. Blok et 
al. predict that costs will only shift “a bit 
upward,” but we argue that more research 
should be conducted to answer this empiri-
cal question. 

Blok et al. also suggest that the uncer-
tainty in IPCC estimates leaves room for 
alternative explanations. We agree but 
question whether the IPCC is taking these 
uncertainties into account in its recom-
mendations. For example, it is unclear 
whether the presented analysis warrants 
stating with “high confidence” that global 
emissions could decline by half in 2030 at 
a cost of $100 per tonne of CO2 (4).

Blok et al. rightly note that mitigation 
costs change over time (5). Many such costs 
have declined substantially, particularly 
in the case of solar photovoltaics (6), but 
barriers still exist even in this example. 
Long-term contracts can lock in existing 
coal power plants (7), and the rate of return 
on investment in renewable sources of 
energy is lower than comparable alterna-
tives (8).

We in no way minimize the potential of 
available mitigation options. Rather, we 
highlight behavioral, institutional, political, 

and other potential barriers to adoption to 
emphasize the need for policies that over-
come them (9). For example, McKinsey & 
Company estimated that switching incan-
descent to LED light bulbs in residential 
areas (10) would pay for itself, but it took 
the US Energy Independence and Security 
Act of 2007 to institute light bulb efficiency 
standards to eliminate incandescent bulbs 
in the United States within 15 years (11).
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Design studies for clinical 
prediction
 In their Research Article “Illusory gener-
alizability of clinical prediction models” 
(12 January, p. 164), A. M. Chekroud et al. 
demonstrate that making robust and gen-
eralizable predictions in clinical contexts 
is difficult. Their results reveal flaws in 
the current strategy of applying artifi-
cial intelligence to prediction tasks. The 
reuse of existing data from randomized 
controlled trials and the lack of iterative 

model development hinder the ability of 
machine learning models to contribute in 
clinical settings.

Studies that were initially designed to 
answer fundamentally different questions 
(such as randomized controlled trials 
conducted to assess treatment efficacy) 
are only moderately suited to prediction 
analyses. Such studies lack the constructs 
relevant for prediction, focusing instead 
on sociodemographic and diagnostic 
information. Because they were not devel-
oped for a specific prediction use case, 
they are often designed to measure the 
maximum overall accuracy of prediction 
metrics, such as sensitivity and specificity, 
instead of allowing optimization depend-
ing on what is necessary for a particular 
application. PREACT, a prospective lon-
gitudinal naturalistic study in outpatient 
centers in Berlin, Germany, was designed 
for treatment outcome prediction, serving 
as an example of a study that may provide 
the basis for accurate machine learning 
predictions (1). 

When a machine learning model 
achieves good results, researchers should 
work to optimize and further develop 
that existing model instead of starting 
from scratch and building a new model 
that then achieves results in the moderate 
range. Such studies, developed specifically 
for prediction, could start a process of slow 
but continuous improvement of clinical 
prediction models that will eventually 
lead to accurate, robust, and generalizable 
models for clinical practice.
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